Class documentation of Concepts

Loading...
Searching...
No Matches
inhomDirichletBCsLagrange.py

Contents

  1. Introduction
  2. Variational Formulation
  3. Commented Program
  4. Results
  5. Complete Source Code

Introduction

In this tutorial the implementation of inhomogeneous Dirichlet boundary conditions using Lagrangian multipliers is shown.

The equation solved is the reaction-diffusion equation

\[ - \Delta u + u = f \]

in the unit square $ \Omega = (0,1)^2 $ with source term

\[
f(x,y) = -5\exp\left(-(x-1/2)^2-(y-1/2)^2\right)
\]

and Dirichlet boundary condition $
u = g
$ on the boundary $ \partial\Omega $ of $ \Omega $ where

\[
g = 
\begin{cases}
\sin \pi x, &(x,y)\in\Gamma_{\rm inh}=\{(x,y)\in\partial\Omega\mid y=0\},\\
0,          &(x,y)\in\partial\Omega\setminus\Gamma_{\rm inh}.
\end{cases}
\]

Variational Formulation

The variational formulation of the reaction-diffusion equation reads: find $ u \in H^1(\Omega) $ that satisfies the boundary conditions and

\[
\int_{\Omega}\nabla u\cdot\nabla v\;{\rm d}x
+ \int_{\Omega} u\,v\;{\rm d}x
- \int_{\partial\Omega} \partial_n u \,v \;{\rm d}s(x)
= 
\int_{\Omega} f\,v\;{\rm d}x,
\]

for all $ v \in H^1(\Omega) $. In order to incorporate the boundary conditions into the variational formulation, we introduce the Lagrangian multiplier $ \lambda \in H^{-1/2}(\partial\Omega) $ defined by $ \lambda = \partial_n u $. The space $ H^{-1/2}(\partial\Omega) $ of the Lagrangian multiplier is the dual space of the trace space $ H^{1/2}(\partial\Omega) $ of $ H^1(\Omega) $ on the boundary $ \partial\Omega $. The boundary condition is then incorporated by testing the condition with test functions in the dual space $ H^{-1/2}(\partial\Omega) $. Thus, the mixed variational formulation reads: find $ (u,\lambda)\in H^1(\Omega) \times H^{-1/2}(\partial\Omega) $ such that

\begin{eqnarray*}
\int_{\Omega}\nabla u\cdot\nabla v\;{\rm d}x
+   \int_{\Omega} uv\;{\rm d}x
-   \int_{\partial\Omega} \lambda \,v \;{\rm d}s(x)
&=& \int_{\Omega} f\,v\;{\rm d}x
\qquad\forall v\in H^1(\Omega)\\
\int_{\partial\Omega} u \lambda' \;{\rm d}s(x)
&=& \int_{\partial\Omega} g \lambda' \;{\rm d}s(x)
\qquad\forall \lambda'\in H^{-1/2}(\partial\Omega)
\end{eqnarray*}

Commented Program

First, we have to import certain modules from the libconceptspy package.

2from libconceptspy import concepts
3from libconceptspy import graphics
4from libconceptspy import hp1D
5from libconceptspy import hp2D

In order to use MUMPS as a solver, we need to import MPI

10from mpi4py import MPI

Main Program

The mesh is read from three files containing the coordinates, the elements and the boundary attributes of the mesh.

16 try:
17 mesh = concepts.Import2dMesh(coord = SOURCEDIR + "/applications/unitsquareCoordinates.dat",
18 elms = SOURCEDIR + "/applications/unitsquareElements.dat",
19 boundary = SOURCEDIR + "/applications/unitsquareEdges.dat"
20 )
21 print ('Mesh:')
22 print (mesh)

In our example, the edges are given the following attributes: 1 (bottom), 2 (right), 3 (top) and 4 (left).

If there is an error reading those files, then an exception error message is returned.

24 except RuntimeError:
25 print("Mesh import error")

else, the mesh is plotted using scaling factor of 100, a greyscale of 1.0 and one point per edge.

28 graphics.MeshEPS_r(msh = mesh, filename = "mesh.eps", scale=100, greyscale=1.0, nPoints=1)

We define a set of attributes of the boundary edges

31 attrBoundaryEdges = concepts.Set_uint()
32 for i in range(1,5):
33 attrBoundaryEdges.insert(i)

The space is built using the mesh, a refinement factor of 2 and a polynomial degree to 3. Then the elements of the space are built and the space is plotted.

Now, we build the trace space of our space at the boundary edges

and, its corresponding dual space

The right hand side is computed. First we calculate the vector corresponding to the linear form of the source term

then the vector that corresponds to the inhomogeneous Dirichlet boundary condition is built

and finally, these two vectors are put together in a block vector.

The system matrix is also assembled as a block matrix. First we account for the bilinear forms hp2D.Laplace_r and hp2D.Identity_r that build the upper right block.

Then, the bilinear form hp1D.Identity_r is used to build the remaining two rectangular block matrices M12 and M21 that correspond to the boundary conditions.

Finally, the four precomputed matrices A11, M11, M12 and M21 are added into the block system matrix A.

We solve the equation using a Mumps solver.

The coefficient vector u of the solution and the coefficient vector lambda of the Lagrangian are read from the solution vector sol.

Finally, the solution u is stored in 'inhomDirichletLagrange.mat' file using graphics.MatlabBinaryGraphics. To this end, the shape functions are computed on equidistant points using the trapezoidal quadrature rule.

Results

Output of the program:

Mesh: Import2dMesh(ncell = 1)
Space:
hpAdaptiveSpaceH1(dim = 169 (V:25, E:80, I:64), nelm = 16)
Trace Space:
TraceSpace(QuadEdgeFirst(EdgeNormalVectorRule()), dim = 169, nelm = 16)
Dual Space:
DualSpace(dim = 48, nelm = 16)
RHS Vector 2D:
Vector(169, [-5.494815e-02, -1.219900e-01, -2.708292e-01, -1.219900e-01, -1.893229e-02, -7.072544e-04, -4.203145e-02, -1.570171e-03, -4.203145e-02, -1.570171e-03, -1.893229e-02, -7.072544e-04, -6.523089e-03, -2.436833e-04, -2.436833e-04, -9.103287e-06, -1.296912e-01, -2.879265e-01, -2.143641e-02, -2.669927e-04, -4.468487e-02, -1.669295e-03, -4.759082e-02, 5.927486e-04, -7.385877e-03, -2.759145e-04, -9.199187e-05, -3.436544e-06, -3.061031e-01, -2.879265e-01, -5.059520e-02, -6.301685e-04, -5.059520e-02, -6.301685e-04, -4.759082e-02, 5.927486e-04, -8.362783e-03, -1.041593e-04, -1.041593e-04, -1.297316e-06, -1.296912e-01, -4.468487e-02, -1.669295e-03, -2.143641e-02, -2.669927e-04, -7.385877e-03, -9.199187e-05, -2.759145e-04, -3.436544e-06, -1.219900e-01, -2.708292e-01, -2.143641e-02, 2.669927e-04, -4.203145e-02, -1.570171e-03, -4.759082e-02, 5.927486e-04, -7.385877e-03, -2.759145e-04, 9.199187e-05, 3.436544e-06, -5.494815e-02, -1.219900e-01, -1.893229e-02, 7.072544e-04, -1.893229e-02, -7.072544e-04, -4.203145e-02, -1.570171e-03, -6.523089e-03, -2.436833e-04, 2.436833e-04, 9.103287e-06, -1.296912e-01, -2.879265e-01, -2.143641e-02, -2.669927e-04, -4.468487e-02, -1.669295e-03, -4.759082e-02, 5.927486e-04, -7.385877e-03, -9.199187e-05, 2.759145e-04, 3.436544e-06, -5.059520e-02, -6.301685e-04, -8.362783e-03, -1.041593e-04, 1.041593e-04, 1.297316e-06, -2.708292e-01, -2.879265e-01, -4.759082e-02, 5.927486e-04, -4.759082e-02, 5.927486e-04, -5.059520e-02, -6.301685e-04, -8.362783e-03, 1.041593e-04, 1.041593e-04, -1.297316e-06, -1.219900e-01, -2.143641e-02, 2.669927e-04, -4.203145e-02, -1.570171e-03, -7.385877e-03, 9.199187e-05, 2.759145e-04, -3.436544e-06, -5.494815e-02, -1.219900e-01, -1.893229e-02, 7.072544e-04, -1.893229e-02, -7.072544e-04, -4.203145e-02, -1.570171e-03, -6.523089e-03, 2.436833e-04, 2.436833e-04, -9.103287e-06, -1.296912e-01, -2.143641e-02, -2.669927e-04, -4.468487e-02, -1.669295e-03, -7.385877e-03, 2.759145e-04, 9.199187e-05, -3.436544e-06, -2.708292e-01, -1.219900e-01, -4.759082e-02, 5.927486e-04, -4.203145e-02, -1.570171e-03, -2.143641e-02, 2.669927e-04, -7.385877e-03, 9.199187e-05, -2.759145e-04, 3.436544e-06, -4.759082e-02, 5.927486e-04, -8.362783e-03, 1.041593e-04, -1.041593e-04, 1.297316e-06, -1.219900e-01, -2.143641e-02, 2.669927e-04, -4.203145e-02, -1.570171e-03, -7.385877e-03, 2.759145e-04, -9.199187e-05, 3.436544e-06, -5.494815e-02, -1.893229e-02, 7.072544e-04, -1.893229e-02, 7.072544e-04, -6.523089e-03, 2.436833e-04, -2.436833e-04, 9.103287e-06])
RHS Vector 1D:
Vector(48, [ 1.960099e-03, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.853134e-01, -9.727886e-04, -1.320752e-04, 2.620727e-01, -2.348519e-03, -5.470734e-05, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.853134e-01, -2.348519e-03, 5.470734e-05, 1.960099e-03, 2.864357e-17, -7.696566e-20, 4.296913e-22, -9.727886e-04, 1.320752e-04, 2.192284e-17, -6.524834e-20, 1.223657e-21, 1.186456e-17, -4.359754e-20, 1.831332e-21, 1.506967e-19, 1.134717e-17, -5.956612e-20, -8.087273e-21, -1.530942e-20, 2.160204e-21, 1.604733e-17, -1.438053e-19, -3.349858e-21, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.134717e-17, -1.438053e-19, 3.349858e-21, 1.200215e-19, 0.000000e+00, 0.000000e+00, -5.956612e-20, 8.087273e-21])
RHS Vector:
Vector(217, [-5.494815e-02, -1.219900e-01, -2.708292e-01, -1.219900e-01, -1.893229e-02, -7.072544e-04, -4.203145e-02, -1.570171e-03, -4.203145e-02, -1.570171e-03, -1.893229e-02, -7.072544e-04, -6.523089e-03, -2.436833e-04, -2.436833e-04, -9.103287e-06, -1.296912e-01, -2.879265e-01, -2.143641e-02, -2.669927e-04, -4.468487e-02, -1.669295e-03, -4.759082e-02, 5.927486e-04, -7.385877e-03, -2.759145e-04, -9.199187e-05, -3.436544e-06, -3.061031e-01, -2.879265e-01, -5.059520e-02, -6.301685e-04, -5.059520e-02, -6.301685e-04, -4.759082e-02, 5.927486e-04, -8.362783e-03, -1.041593e-04, -1.041593e-04, -1.297316e-06, -1.296912e-01, -4.468487e-02, -1.669295e-03, -2.143641e-02, -2.669927e-04, -7.385877e-03, -9.199187e-05, -2.759145e-04, -3.436544e-06, -1.219900e-01, -2.708292e-01, -2.143641e-02, 2.669927e-04, -4.203145e-02, -1.570171e-03, -4.759082e-02, 5.927486e-04, -7.385877e-03, -2.759145e-04, 9.199187e-05, 3.436544e-06, -5.494815e-02, -1.219900e-01, -1.893229e-02, 7.072544e-04, -1.893229e-02, -7.072544e-04, -4.203145e-02, -1.570171e-03, -6.523089e-03, -2.436833e-04, 2.436833e-04, 9.103287e-06, -1.296912e-01, -2.879265e-01, -2.143641e-02, -2.669927e-04, -4.468487e-02, -1.669295e-03, -4.759082e-02, 5.927486e-04, -7.385877e-03, -9.199187e-05, 2.759145e-04, 3.436544e-06, -5.059520e-02, -6.301685e-04, -8.362783e-03, -1.041593e-04, 1.041593e-04, 1.297316e-06, -2.708292e-01, -2.879265e-01, -4.759082e-02, 5.927486e-04, -4.759082e-02, 5.927486e-04, -5.059520e-02, -6.301685e-04, -8.362783e-03, 1.041593e-04, 1.041593e-04, -1.297316e-06, -1.219900e-01, -2.143641e-02, 2.669927e-04, -4.203145e-02, -1.570171e-03, -7.385877e-03, 9.199187e-05, 2.759145e-04, -3.436544e-06, -5.494815e-02, -1.219900e-01, -1.893229e-02, 7.072544e-04, -1.893229e-02, -7.072544e-04, -4.203145e-02, -1.570171e-03, -6.523089e-03, 2.436833e-04, 2.436833e-04, -9.103287e-06, -1.296912e-01, -2.143641e-02, -2.669927e-04, -4.468487e-02, -1.669295e-03, -7.385877e-03, 2.759145e-04, 9.199187e-05, -3.436544e-06, -2.708292e-01, -1.219900e-01, -4.759082e-02, 5.927486e-04, -4.203145e-02, -1.570171e-03, -2.143641e-02, 2.669927e-04, -7.385877e-03, 9.199187e-05, -2.759145e-04, 3.436544e-06, -4.759082e-02, 5.927486e-04, -8.362783e-03, 1.041593e-04, -1.041593e-04, 1.297316e-06, -1.219900e-01, -2.143641e-02, 2.669927e-04, -4.203145e-02, -1.570171e-03, -7.385877e-03, 2.759145e-04, -9.199187e-05, 3.436544e-06, -5.494815e-02, -1.893229e-02, 7.072544e-04, -1.893229e-02, 7.072544e-04, -6.523089e-03, 2.436833e-04, -2.436833e-04, 9.103287e-06, 1.960099e-03, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.853134e-01, -9.727886e-04, -1.320752e-04, 2.620727e-01, -2.348519e-03, -5.470734e-05, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.853134e-01, -2.348519e-03, 5.470734e-05, 1.960099e-03, 2.864357e-17, -7.696566e-20, 4.296913e-22, -9.727886e-04, 1.320752e-04, 2.192284e-17, -6.524834e-20, 1.223657e-21, 1.186456e-17, -4.359754e-20, 1.831332e-21, 1.506967e-19, 1.134717e-17, -5.956612e-20, -8.087273e-21, -1.530942e-20, 2.160204e-21, 1.604733e-17, -1.438053e-19, -3.349858e-21, 0.000000e+00, 0.000000e+00, 0.000000e+00, 1.134717e-17, -1.438053e-19, 3.349858e-21, 1.200215e-19, 0.000000e+00, 0.000000e+00, -5.956612e-20, 8.087273e-21])
System Matrix A11:
SparseMatrix(169x169, HashedSparseMatrix: 1785 (6.24978%) entries bound.)
System Matrix M11:
SparseMatrix(169x169, HashedSparseMatrix: 2809 (9.83509%) entries bound.)
System Matrix M12:
SparseMatrix(169x169, HashedSparseMatrix: 2809 (9.83509%) entries bound.)
System Matrix M21:
SparseMatrix(48x169, HashedSparseMatrix: 112 (1.38067%) entries bound.)
System Matrix A:
SparseMatrix(217x217, HashedSparseMatrix: 3033 (6.44099%) entries bound.)
Solver:
Mumps(n = 217)
Solution u:
Vector(169, [-3.843730e-05, 7.069574e-01, 1.145216e-01, 2.745231e-17, 1.167346e-01, 1.849053e-02, -2.470302e-01, 1.513115e-02, -3.521483e-02, 1.222784e-02, -1.767987e-16, -1.300331e-16, -1.010858e-01, 1.657205e-02, 9.822506e-03, -6.715120e-03, 9.997888e-01, 1.865335e-01, 2.818223e-01, 7.659027e-03, -3.290883e-01, 1.852945e-02, 6.508946e-02, -4.285731e-03, -8.302083e-02, 4.354588e-03, -1.070311e-03, 3.682207e-04, -1.390846e-01, -1.183699e-01, -1.754996e-01, 7.990479e-03, -2.459961e-02, 2.422382e-03, -1.271322e-01, -5.897441e-03, -4.730355e-02, 2.067389e-03, -6.100085e-04, -3.252949e-05, 8.392560e-18, -7.963128e-02, 6.484164e-03, -6.632734e-17, -6.022298e-17, -2.783892e-02, 1.551738e-03, -3.120827e-03, 2.829607e-04, 7.069574e-01, 1.145216e-01, 2.818223e-01, -7.659027e-03, -2.470302e-01, 1.513115e-02, 6.508946e-02, -4.285731e-03, -8.302083e-02, 4.354588e-03, 1.070311e-03, -3.682207e-04, -3.843730e-05, 1.337389e-16, 1.167346e-01, -1.849053e-02, -2.204895e-17, -2.867429e-17, -3.521483e-02, 1.222784e-02, -1.010858e-01, 1.657205e-02, -9.822506e-03, 6.715120e-03, 9.411970e-17, -1.183699e-01, -1.148842e-16, 7.434135e-17, -7.963128e-02, 6.484164e-03, -1.271322e-01, -5.897441e-03, -2.783892e-02, 1.551738e-03, 3.120827e-03, -2.829607e-04, -2.459961e-02, 2.422382e-03, -4.730355e-02, 2.067389e-03, 6.100085e-04, 3.252949e-05, -1.455747e-01, -1.813021e-01, -8.576168e-02, 1.351167e-03, -3.808912e-02, -1.479664e-03, -1.169903e-01, -2.261285e-03, -3.094120e-02, 7.818221e-04, 1.733609e-04, -1.052648e-04, 5.297275e-17, 4.508856e-17, -3.546363e-17, -7.793839e-02, 5.447318e-03, -2.107821e-02, -3.758636e-04, 2.052405e-03, 1.006130e-04, -3.516085e-17, 4.849705e-17, -6.076754e-18, -6.568048e-18, -9.181996e-18, 5.938771e-18, -9.353945e-02, 2.845041e-03, -7.477510e-02, -1.400772e-02, -1.402845e-02, -7.228221e-03, 6.720056e-17, -1.363958e-19, 1.186490e-17, -1.120372e-01, 1.162147e-03, -1.943362e-02, 1.840870e-03, -6.726377e-04, 1.466294e-04, -1.455747e-01, -7.018279e-18, -8.576168e-02, 1.351167e-03, -7.793839e-02, 5.447318e-03, 7.994743e-17, -2.645529e-18, -2.107821e-02, -3.758636e-04, -2.052405e-03, -1.006130e-04, -3.808912e-02, -1.479664e-03, -3.094120e-02, 7.818221e-04, -1.733609e-04, 1.052648e-04, 4.682683e-17, -1.640647e-17, 1.921618e-17, -9.353945e-02, 2.845041e-03, -1.943362e-02, 1.840870e-03, 6.726377e-04, -1.466294e-04, 3.588635e-17, 2.192255e-18, -4.324464e-18, 2.505082e-17, -1.383750e-17, -7.477510e-02, -1.400772e-02, 1.402845e-02, 7.228221e-03])
Lagrangian lambda:
Vector(48, [-2.599760e-01, -3.564760e-01, 5.334279e+00, -3.591746e+00, 3.312759e+00, -2.286376e+00, 8.518971e+00, 4.523683e+00, -2.194781e+00, 2.776326e+00, 7.677355e-01, -1.142425e+00, 2.714910e+00, 3.312759e+00, -2.194781e+00, -2.776326e+00, -2.599760e-01, -3.564760e-01, 5.334279e+00, -3.591746e+00, -2.286376e+00, -8.518971e+00, 7.677355e-01, -1.142425e+00, 2.714910e+00, 8.660466e-01, -7.911928e-01, 2.372638e-01, 4.703880e-01, 9.287585e-01, 2.710241e-01, 5.898491e-01, 1.557665e-01, -4.119058e-01, 1.152213e+00, -4.279965e-01, 5.506984e-01, 8.660466e-01, -7.911928e-01, 2.372638e-01, 9.287585e-01, -4.279965e-01, -5.506984e-01, 4.703880e-01, 1.557665e-01, -4.119058e-01, 2.710241e-01, -5.898491e-01])

Matlab plot of the solution: Matlab output

@section complete Complete Source Code
1# import modules from package
2from libconceptspy import concepts
3from libconceptspy import graphics
4from libconceptspy import hp1D
5from libconceptspy import hp2D
6
7import os
8from sys import exit
9from mpi4py import MPI
10
11SOURCEDIR = os.environ['CONCEPTSPATH']
12
13def main():
14 try:
15 mesh = concepts.Import2dMesh(coord = SOURCEDIR + "/applications/unitsquareCoordinates.dat",
16 elms = SOURCEDIR + "/applications/unitsquareElements.dat",
17 boundary = SOURCEDIR + "/applications/unitsquareEdges.dat"
18 )
19 print ('Mesh:')
20 print (mesh)
21 except RuntimeError:
22 print("Mesh import error")
23 else:
24 graphics.MeshEPS_r(msh = mesh, filename = "mesh.eps", scale=100, greyscale=1.0, nPoints=1)
25
26 attrBoundaryEdges = concepts.Set_uint()
27 for i in range(1,5):
28 attrBoundaryEdges.insert(i)
29
30
31 levelOfRefinement = 2
32 polynomialDegree = 3
33 space = hp2D.hpAdaptiveSpaceH1(msh = mesh, l = levelOfRefinement, p = polynomialDegree)
34 space.rebuild()
35 print('\nSpace:')
36 print (space)
37 graphics.MeshEPS_r(spc = space, filename = "space.eps", scale=100, greyscale=1.0, nPoints=1 )
38
39
40 TraceSpace = hp2D.TraceSpace(spc = space, edgeAttr = attrBoundaryEdges)
41 print('\nTrace Space:')
42 print (TraceSpace)
43
44 DualSpace = hp1D.DualSpace(TraceSpace.scan())
45 print('\nDual Space:')
46 print (DualSpace)
47
48
49 lform2D = hp2D.Riesz_r(concepts.ParsedFormula_r(formula = "(-5*exp(-(x-0.5)*(x-0.5)-(y-0.5)*(y-0.5)))"))
50 rhs2D = concepts.Vector_r(spc = space, lf = lform2D)
51 print('\nRHS Vector 2D:')
52 print(rhs2D)
53
54 lform1D = hp1D.Riesz_r(concepts.ParsedFormula_r(formula = "(sin(pi*x)*cos(pi/2*y))"))
55 rhs1D = concepts.Vector_r(spc = DualSpace, lf = lform1D)
56 print('\nRHS Vector 1D:')
57 print(rhs1D)
58
59 ds_dim = DualSpace.dim()
60 spc_dim = space.dim()
61 rhs = concepts.Vector_r(spc_dim + ds_dim)
62 rhs.data()[:spc_dim] = rhs2D.data()[:spc_dim]
63 rhs.data()[spc_dim:] = rhs1D.data()[:ds_dim]
64 print('\nRHS Vector:')
65 print (rhs)
66
67
68 la = hp2D.Laplace_r()
69 A11 = concepts.SparseMatrix_r(spc = space, bf = la)
70 A11.compress();
71 print('\nSystem Matrix A11:')
72 print(A11)
73
74 id = hp2D.Identity_r()
75 M11 = concepts.SparseMatrix_r(spc = space, bf = id)
76 M11.compress()
77 print('\nSystem Matrix M11:')
78 print(M11)
79
80 id1D = hp1D.Identity_r()
81 M12 = concepts.SparseMatrix_r(spcX = TraceSpace, spcY = DualSpace, bf = id1D)
82 M12.compress()
83 print('\nSystem Matrix M12:')
84 print(M11)
85
86 M21 = concepts.SparseMatrix_r(spcX = DualSpace, spcY = TraceSpace, bf = id1D)
87 M21.compress()
88 print('\nSystem Matrix M21:')
89 print(M21)
90
91 A = concepts.SparseMatrix_r(spc_dim + ds_dim, spc_dim + ds_dim)
92 A11.addInto(A, 1.0)
93 M11.addInto(A, 1.0)
94 M12.addInto(A, -1.0, 0, spc_dim)
95 M21.addInto(A, 1.0, spc_dim, 0)
96 print('\nSystem Matrix A:')
97 print(A)
98
99
100 solver = concepts.Mumps_r(A = A)
101 sol = concepts.Vector_r(dim = spc_dim+ds_dim)
102 solver(fncY = rhs, fncX = sol)
103 print('\nSolver:')
104 print solver
105
106
107 u = concepts.Vector_r(dim = spc_dim)
108 Lambda = concepts.Vector_r(dim = ds_dim)
109 u.data()[:spc_dim] = sol.data()[:spc_dim]
110 print('\nSolution u:')
111 print(u)
112
113 Lambda.data()[:ds_dim] = sol.data()[spc_dim:]
114 print('\nLagrangian lambda:')
115 print (Lambda)
116
117
118 hp2D.IntegrableQuad.setTensor( concepts.TRAPEZE, True, 8 )
119 space.recomputeShapefunctions()
120 graphics.MatlabBinaryGraphics(spc = space, filename = "inhomDirichletLagrange", sol = u)
121
122if __name__ == "__main__":
123 main()