#include <exactEstimator.hh>
Public Member Functions | |
ExactEstimator (const concepts::SpaceOnCells< F > &spc, const concepts::Vector< F > &sol) | |
template<class G , class H > | |
void | addErrorContr (const concepts::ElementFormula< G > *efrm, const concepts::ElementFormula< H > *afrm, Real s=1.0, const concepts::ElementFormula< F > *w=0) |
void | compute () |
virtual ExactEstimator< F > * | clone () const |
Protected Member Functions | |
virtual std::ostream & | info (std::ostream &os) const |
Abstract class representing the explicit residual a posteriori error estimator.
At the moment just one underlying space is supported, i.e. with that robin conditions cannot be handeled for the residuals, atm
Definition at line 30 of file exactEstimator.hh.
|
inline |
Constructur of the exact error estimator.
spc | Underlying 2d Space, i.e. a AdaptiveSpace |
sol | solution vector of the approximated FEM solution |
Definition at line 41 of file exactEstimator.hh.
|
inline |
Sets individual norm contributions up to now everything in L2 norm
example 1) efrm = Grad(u), afrm = Grad(u_{hp}), w = 0 , s = 1.0 implies norm contribution || Grad(u) - Grad[u_{hp}] ||_{L^2(K)} on each element K.
example 2) efrm = u, afrm = u_{hp} w = ParsedFormula("(1/sqrt(x^2+y^2))") s = lambda implies the contribution lambda * || w * (u_{hp}-u) ||_{L^2(K)} on each element K where u_{hp} is the approximate solution
Definition at line 64 of file exactEstimator.hh.
|
inlinevirtual |
Definition at line 105 of file exactEstimator.hh.
|
inline |
Definition at line 92 of file exactEstimator.hh.
|
inlineprotectedvirtual |
Definition at line 109 of file exactEstimator.hh.