Class documentation of Concepts

Loading...
Searching...
No Matches
hp1D::LinearFormHelper< 0, F > Class Template Reference

#include <formula.hh>

Inheritance diagram for hp1D::LinearFormHelper< 0, F >:
hp1D::BilinearFormHelper< 0, 0, F >

Public Member Functions

 LinearFormHelper (const concepts::ElementFormulaContainer< F > frm)
 

Protected Member Functions

void computeIntermediate_ (const BaseElement< Real > &elm) const
 

Protected Attributes

concepts::Array< F > intermediateValue_
 
const concepts::ElementFormulaContainer< F > frm_
 ElementFormula.
 

Detailed Description

template<class F>
class hp1D::LinearFormHelper< 0, F >

Helper class for linearforms l(v), where v is a 0-form

\[\displaystyle l(v)
= \int\limits_K f(x)^\top v\,dx
= \int\limits_{\hat{K}} f(F_K(\xi))^\top
\hat{v}\,\circ F_K^{-1} J\,d\xi\]

$F_K$ is the element mapping from reference element $\hat{K} = [0,1]$, $J$ is the Jacobian.

Computes intermediate data for element matrix computation.

Author
Kersten Schmidt, 2009

Definition at line 114 of file formula.hh.

Member Function Documentation

◆ computeIntermediate_()

template<class F >
void hp1D::LinearFormHelper< 0, F >::computeIntermediate_ ( const BaseElement< Real > &  elm) const
protected

Compute the intermediate data for element matrix computation

This method is important for the derivated linear forms.

Member Data Documentation

◆ frm_

template<class F >
const concepts::ElementFormulaContainer<F> hp1D::LinearFormHelper< 0, F >::frm_
protected

ElementFormula.

Definition at line 133 of file formula.hh.

◆ intermediateValue_

template<class F >
concepts::Array<F> hp1D::LinearFormHelper< 0, F >::intermediateValue_
mutableprotected

Intermediate value (on each quadrature point)

\[f(F_K(\xi))^\top \det J\]

Definition at line 130 of file formula.hh.


The documentation for this class was generated from the following file: