|
| | BesselY (const Real m=1.0, const Real r0=0.0) |
| | Constructor.
|
| |
| | BesselY (const Real m, const Real3d r0) |
| |
| virtual Real | operator() (const Real p, const Real t=0.0) const |
| | Bessel function.
|
| |
| virtual Real | operator() (const Real2d &p, const Real t=0.0) const |
| |
| virtual Real | operator() (const Real3d &p, const Real t=0.0) const |
| |
| Real | derivative (const Real p) |
| | Derivative of Bessel function.
|
| |
| Real | derivative (const Real2d &p) |
| |
| Real | derivative (const Real3d &p) |
| |
| virtual BesselY< n > * | clone () const |
| | Virtual copy constructor.
|
| |
| virtual F | operator() (const ElementWithCell< G > &elm, const Real p, const Real t=0.0) const |
| |
| virtual F | operator() (const ElementWithCell< G > &elm, const Real2d &p, const Real t=0.0) const |
| |
| virtual F | operator() (const ElementWithCell< G > &elm, const Real3d &p, const Real t=0.0) const |
| |
| virtual F | operator() (const ElementWithCell< concepts::Realtype< F >::type > &elm, const Real p, const Real t=0.0) const=0 |
| |
| virtual F | operator() (const ElementWithCell< concepts::Realtype< F >::type > &elm, const Real2d &p, const Real t=0.0) const=0 |
| |
| virtual F | operator() (const ElementWithCell< concepts::Realtype< F >::type > &elm, const Real3d &p, const Real t=0.0) const=0 |
| |
| virtual const F & | dflt_value () const |
| | Gives default value.
|
| |
| virtual F & | dflt_value () |
| | Gives default value.
|
| |
|
| virtual Real | operator() (const Connector &cntr, const Real p, const Real t=0.0) const |
| |
| virtual Real | operator() (const Connector &cntr, const Real2d &p, const Real t=0.0) const |
| |
| virtual Real | operator() (const Connector &cntr, const Real3d &p, const Real t=0.0) const |
| |
template<
int n>
class concepts::BesselY< n >
Class for evaluating the Bessel function of second kind.
A center r0 and a shortening factor n can be given to evaluate
, where
is the distance from the origin.
- Author
- (C) Copr. 1988-92 Numerical Recipes Software. Abramowitz and Stegun. Handbook of Mathematical Functions.
Definition at line 208 of file bessel.hh.