Class documentation of Concepts

Loading...
Searching...
No Matches
concepts Namespace Reference

Classes

class  _HashedSMatrix_iterator
 
class  _Matrix_iterator
 
class  _Matrix_iterator_base
 
class  _SubMatrix_iterator
 
class  Absolute
 
class  AbsoluteComp
 
class  AdaptiveAdjust
 
class  AdaptiveAdjustP
 
struct  AdaptiveControl
 
struct  AdaptiveControlP
 
struct  AdaptiveControlTag
 
class  AdaptiveModel
 
class  AdaptiveQuadratureRule1d
 
class  AdaptiveSpace
 
class  Adaptivity
 
class  AfterIteration
 
class  AnasaziES
 
class  AnasaziMV
 
class  AnasaziOp
 
class  Array
 
class  ArrayCoord
 
class  ArrayCoord< 1 >
 
class  ArrayCoord< 2 >
 
class  ArrayDeterminant
 
class  ArrayGramMatrix
 
class  ArrayHessian
 
class  ArrayHessian< 1, 1 >
 
class  ArrayJacobian
 
class  ArrayJacobian< 1, 1 >
 
class  ArrayJacobian< 2, 2 >
 
class  ArrayJacobian< 3, 3 >
 
class  ArrayLocalCoord
 
class  ArrayMatrixInverse
 
class  ArrayMatrixTranspose
 
class  ArrayReciprocal
 
class  ArrayScan
 
class  Assertion
 
class  Attribute
 
class  AttributeBool
 
class  AttributesFile
 
class  BaseSequence
 
class  BaseSet
 
class  BelosLinProb
 
class  BelosSolver
 
class  BesselJ
 
class  BesselY
 
class  BiCGStab
 
class  BiCGStabFabric
 
class  BilinearF_Sum
 
class  BilinearF_W
 
class  BilinearForm
 
class  BilinearFormContainer
 
class  BilinearFormLiCo
 
class  BlendingHexahedron3d
 
class  BlendingQuad2d
 
class  Boundary
 
class  BoundaryConditions
 
class  BuildTColumnsBase
 
class  CartesianPMLFormulas
 
struct  CCell_F
 
struct  CCell_F_dist
 
class  Cell
 
class  Cell1
 One dimensional cell. More...
 
class  Cell2
 Two dimensional cell. More...
 
class  Cell3
 Three dimensional cell. More...
 
class  CellBox
 
class  CellCondition
 
class  CellConditions
 
class  CellData
 
class  CellDiameter
 
class  CellEdgeIntegral
 
class  CellFaceIntegral
 
class  CellIntegral
 
struct  CellMap
 
class  CellPostprocess
 
struct  CellStripeElement
 
class  CellToCellMapping
 
class  CellType
 
class  CellType< 1 >
 
class  CellType< 2 >
 
class  CellType< 3 >
 
class  CG
 
class  CGFabric
 
class  Circle
 
class  CircleBoundary
 
class  CircleMappingEdge2d
 
class  CircleMappingEdge3d
 
class  Cloneable
 
class  CmplxPart
 
struct  Cmplxtype
 
struct  Cmplxtype< std::complex< F > >
 
class  CoeffIterator
 
class  CoeffIterator< F, F >
 
class  CoeffIterator< F, Mapping< F, dim > >
 
class  CoeffIterator< F, Point< F, dim > >
 
struct  Combtype
 
struct  Combtype< F, int >
 
struct  Combtype< F, std::complex< F > >
 
struct  Combtype< int, F >
 
struct  Combtype< std::complex< F >, F >
 
class  ComplexFunction
 
class  Compose
 
class  ComposeFormulaMatVec
 
class  ComposeFormulaVecEntry
 
class  Connector
 
class  Connector0
 
class  Connector1
 
class  Connector2
 
class  Connector3
 
class  ConnectorData
 
class  ConnectTwoMeshes
 
class  ConstFormula
 
class  Constrained
 
class  ConvertMeshQuads
 
struct  Coordinate
 
struct  CoordinateParam
 
class  Cos_n_phi
 
class  Cos_n_x
 
class  Cos_n_y
 
class  CRSConvertable
 
class  Cuboid
 
class  CurvatureElementFormula
 
struct  Datatype
 
struct  Datatype< Mapping< F, DimY, DimX > >
 
struct  Datatype< Point< F, dim > >
 
class  DDSolver
 
class  DDSpace
 
class  DefFile
 
class  DenseMatrix
 
class  DiagonalMatrix
 
class  DiagonalSolver
 
class  DiagonalSolverFabric
 
class  DimensionMismatch
 
class  Dirichlet
 
class  DirichletElementFormula
 
class  DomainDecomp
 
class  DummySpace
 
class  DynArray
 
class  DynArrayBase
 
class  DynArrayPage
 
class  EddyGeometry2D
 
class  EddyGeometry2DRectImport
 
class  EddyGeometry2DRotateImport
 
class  EddyGeometry2DRotational
 
class  EdgCorrFile
 
class  Edge
 
class  Edge1d
 
class  Edge2d
 
class  EdgeCoordinateChange
 Coordinate changes for edge elements. More...
 
class  EdgeCoordinateChange< 2 >
 
class  EdgeCoordinateChange< 3 >
 Coordinate changes for edge elements in a parent hexahedron. More...
 
class  EdgeData
 
class  EdgeMesh
 
class  EdgeNd
 
class  EdgeNormalVectorRule
 
class  EdgeNormalVectorRuleAttrib
 
class  EdgeNormalVectorRuleMidPoint
 
class  EdgesOfVertices
 
class  EdgeTraceType
 
class  EdgeTraceTypes
 
class  EdgRadiaFile
 
class  Element
 
class  ElementAndFacette
 
class  ElementFormula
 
class  ElementFormulaBoundary
 
class  ElementFormulaCompose
 
class  ElementFormulaContainer
 
class  ElementFormulaLiCo
 
class  ElementFormulaRotate2D
 
class  ElementFormulaVector
 
class  ElementFormulaVector< 1, F, G, H >
 
class  ElementFormulaVectorBase
 
class  ElementFunction
 
class  ElementGraphics
 
class  ElementGraphicsBase
 
class  ElementMatrix
 
class  ElementMatrixBase
 
class  ElementNotInDomainOfFormula
 
class  ElementPair
 
class  ElementPairList
 
class  ElementWithCell
 
class  EllipseMappingEdge2d
 
class  Estimator
 
class  ExceptionBase
 
class  Exp_i_n_phi
 
class  Exp_i_n_x
 
class  Exp_i_n_y
 
class  ExplicitResidual
 
class  Ez4uException
 
class  FaceData
 
class  FaceNormalVectorRule
 
class  FacetteTraceType
 
class  FacetteTraceTypes
 
class  FFEF_Error
 
class  File
 Base class for File type recognition. More...
 
class  FileOpenError
 
class  FluxesError
 
class  Flyweight
 flyweight memory manager More...
 
class  Formula
 
class  FormulaContainer
 
class  FormulaExpImag1D
 
class  FormulaExpImag2D
 
class  FormulaExpImag2DGrad
 
class  FormulaExpImag2DRadialDer
 
class  FormulaFromElementFormula
 
class  FormulaIncPlaneWaveSource
 
class  FormulaLayerPlaneWaveLayer
 
class  FormulaLayerPlaneWaveLayerGrad
 
class  FormulaLayerPlaneWaveSource
 
class  FormulaLayerPlaneWaveSourceGrad
 
class  FormulaLayerPlaneWaveTotal
 
class  FormulaLayerPlaneWaveTotalGrad
 
class  FormulaLiCo
 
class  FormulaNormalOuterSP2D
 
class  FormulaPMLBoxRestriction
 
class  FormulaPMLCart
 
class  FormulaPMLCartNew
 
class  FormulaPMLEdgeRadia
 
class  FormulaPMLHamburger
 
class  FormulaPMLPowerSigma
 
class  FormulaPMLPowerSigma2D
 
class  FormulaPMLPowerSigmaB2D
 
class  FormulaPMLRadia
 
class  FormulaSyntaxError
 
class  FortranException
 
class  Frm_Product
 
class  Frm_Sum
 
class  FrmE_Component
 
class  FrmE_Component_Matrix
 
class  FrmE_Conjugate
 
class  FrmE_Inverse
 
class  FrmE_NormalVector
 
class  FrmE_NormalVector3d
 
class  FrmE_PMLTransformation
 
class  FrmE_PointsToMapping
 
class  FrmE_PointsToMapping< 2, F, G >
 
class  FrmE_PointToMapping
 
class  FrmE_Product
 
class  FrmE_ScalarProductNormalEdge2d
 
class  FrmE_Sum
 
class  FrmE_TangentialVector
 
class  FrmE_Trace
 
class  Function
 
struct  GeneralMapping
 
struct  GeneralMapping< F, 1 >
 
struct  GeneralPoint
 
struct  getTypeOfObject
 
class  GlobalPostprocess
 
class  GMRes
 
class  GMResFabric
 
class  GmshInputException
 
class  Graph
 
class  GraphVertex
 
class  HamburgerPMLFormulas
 
class  Hash
 
class  Hash< QuadratureOrder >
 
class  Hash< ShapeFunction1DOrder >
 
class  HashedSparseMatrix
 
class  HashMap
 
class  Hex3dSubdiv2x
 
class  Hex3dSubdiv2y
 
class  Hex3dSubdiv2z
 
class  Hex3dSubdiv4x
 
class  Hex3dSubdiv4y
 
class  Hex3dSubdiv4z
 
class  Hex3dSubdiv8
 
class  Hex3dSubdivision
 
class  Hexahedron
 
class  Hexahedron3d
 
class  HexSubdiv2x
 
class  HexSubdiv2y
 
class  HexSubdiv2z
 
class  HexSubdiv4x
 
class  HexSubdiv4y
 
class  HexSubdiv4z
 
class  HexSubdiv8
 
class  HexSubdivision
 
class  HRefinement
 
class  ImagPart
 
class  ImplicitEquilibratedA0Error
 
class  Import2dMesh
 
class  Import2dMeshBase
 
class  Import2dMeshEz4u
 
class  Import2dMeshGeneral
 
class  Import2DMeshGmsh
 
class  Import3dMesh
 
class  Import3DMeshGmsh
 
class  Import3DTetMesh
 
class  ImportMesh
 
struct  Index
 
class  IndexNotExisting
 
struct  IndexRange
 
class  InfiniteEdge
 
class  InfiniteQuad
 
class  InfiniteQuad2d
 
class  InfiniteRect2d
 
class  InfQuadSubdiv2V
 
class  InfQuadSubdivision
 
class  InnerOuterBoundary2d
 
class  InnerResidual
 
class  InOutParameters
 
class  InputAdaptiveModels
 
class  InputEddy2DGeometries
 
class  InputFile
 
class  InputParameter
 
class  InputParser
 
class  IntegrationCell
 
class  InverseMappingEdge2d
 
class  InverseVertexQuadSector2d
 
class  JacobianCell
 
class  JacobianCell< 1 >
 
class  JacobianCell< 2 >
 
class  JacobianCell< 3 >
 
class  Joiner
 
class  Karniadakis
 
class  KarniadakisNew
 
class  Key
 
class  Laguerre
 
class  LaguerreBasis
 
class  LapackChol
 
class  Legendre
 
struct  Level
 
class  LiCo
 
class  LiCoI
 
class  Line
 
class  LinearForm
 
class  LinearFormChoice
 
class  ListScan
 
class  LocalEstimator
 ‍** More...
 
struct  ltidx
 
struct  ltstr
 
class  MacroElementNode
 
class  Map1d
 
class  Map2d
 
class  Map3d
 
class  MapEdge1d
 
class  MapHexahedron3d
 
class  MapParallelepiped3d
 
class  Mapping
 
class  MappingEdge2d
 
class  MappingEdge3d
 
class  MappingHexahedron3d
 
class  MappingHexahedronEdge3d
 
class  MappingParallelEdge2d
 
class  MappingQuad2d
 
class  MappingQuadEdge2d
 
class  MappingStraightEdge2d
 
class  MappingStraightEdge3d
 
class  MappingTriangle2d
 
class  MapQuad2d
 
class  MapTetrahedron3d
 
class  MapTriangle2d
 
class  MapTriangle3d
 
class  MatfileIO
 
class  MatfileIOError
 
class  Matrix
 
class  MatrixElementFormula
 
class  MatrixNotBuilt
 
class  MaxwellBoundary
 
class  MaxwellModel
 
class  Mesh
 
class  Mesh1
 
class  Mesh2
 
class  Mesh2withBoundary
 
class  Mesh3
 
class  MeshGraph2
 
class  MeshGraph2_Edge
 
class  MissingFeature
 
class  MissingParameter
 
class  Model
 
class  ModelControl
 
class  ModelControlBase
 
class  ModelNotSolved
 
class  MultiArray
 
class  MultiArray< 1, T >
 
class  MultiEntrance
 
class  MultiEntrance< 1, T >
 
class  MultiIndex
 
class  multilevelindex
 
class  Multiple
 
class  multiplies
 
class  MultiVector
 recursive definition of the multivector More...
 
class  MultiVector< 0, concepts::Set< CellBox< 1 > > >
 
class  MultiVector< 0, concepts::Set< CellBox< 2 > > >
 
class  MultiVector< 0, concepts::Set< CellBox< 3 > > >
 
class  MultiVector< 0, const ElementWithCell< Cmplx > * >
 
class  MultiVector< 0, const ElementWithCell< Real > * >
 
class  Mumps
 
class  MumpsException
 
class  MumpsFabric
 
class  MumpsOverlap
 
class  MumpsOverlapFabric
 
class  MutableMesh1
 
class  MutableMesh2
 
class  MutableMeshBase
 
class  NegativeJacobian
 
class  Neumann
 
class  Newton
 
class  NewtonException
 
class  NoConvergence
 
class  NoMPIInit_Error
 
class  NotValidDof
 
class  NRLSolver
 
struct  null_deleter
 
struct  number
 
struct  number< double >
 Name traits for the number type Real. More...
 
struct  number< hp2D::hpAdaptiveSpaceL2 >
 
struct  number< long double >
 Name traits for the number type Real. More...
 
struct  number< Mapping< F, dim > >
 
struct  number< Point< F, dim > >
 
struct  number< std::complex< double > >
 Name traits for the number type Cmplx. More...
 
struct  number< std::complex< long double > >
 Name traits for the number type Cmplx. More...
 
class  OpAdd
 
class  Operation
 
class  Operator
 
class  OpMult
 
class  OpRecipr
 
class  Orders
 
class  OrdersBase
 
class  OutputMatlab
 
class  OutputMatlab< Array< F > >
 
class  OutputMatlab< bool >
 
class  OutputMatlab< char * >
 Class for output of C strings. More...
 
class  OutputMatlab< F * >
 Class for output of pointers to matlab. More...
 
class  OutputMatlab< Mapping< F, dim > >
 Class for output of 2D and 3D matrices to matlab. More...
 
class  OutputMatlab< Point< F, dim > >
 Class for output of 2D and 3D vectors to matlab. More...
 
class  OutputMatlab< Sequence< F > >
 
class  OutputMatlab< std::map< F, G > >
 
class  OutputMatlab< std::queue< F > >
 
class  OutputMatlab< std::set< F > >
 
class  OutputMatlab< std::string >
 Class for output of C++ strings. More...
 
class  OutputMatlab< std::vector< F > >
 
class  OutputMatlab< StiffArray< dim, F > >
 
class  OutputOperator
 
class  OutputTecplot
 
class  OutputTecplot< Array< F > >
 
class  OutputTecplot< Point< F, dim > >
 Class for output of 2D and 3D vectors to matlab
More...
 
class  OutputTecplot< std::complex< F > >
 
class  ParabelMappingEdge2d
 
class  Parallelepiped3d
 
class  Pardiso
 
class  PardisoFabric
 
class  ParsedFormula
 
class  ParsedFormula< Cmplx >
 
class  ParsedFormula< Real >
 
class  ParsedFormula< Real2d >
 
class  ParsedFormulaBase
 
class  ParseObjectFromString
 
class  PartMappingEdge2d
 
class  PartMappingHexahedron3d
 
class  PartMappingQuad2d
 
class  Permutation
 
class  PETSc
 
class  PETScFabric
 
class  PETScMat
 
class  PiecewiseConstDynArrayFormula
 
class  PiecewiseConstFormula
 
class  PiecewiseConstImportFormula
 
class  PiecewiseElementFormula
 
class  PiecewiseFormula
 
class  PiecewiseFormula0
 
class  PiecewiseFormulaBase
 
class  PiecewiseFormulaCombine
 
class  PiecewiseFormulaFun
 
class  PiecewiseFormulaVector
 
class  PiecewiseFormulaVector< 1, F, G, H >
 
class  PiecewiseFormulaVectorBase
 
class  PListScan
 
class  Point
 
class  PointerToEmptyBilinearForm
 
class  PointerToEmptyElementFormula
 
class  PointerToEmptyFormula
 
class  PointInCell
 
class  PointInCell< 1 >
 
class  Pool
 
class  PrecondSolverFabric
 
class  PRefinement
 
class  ProcessParameter
 
class  PStlVectorScan
 
class  QR_Q
 
class  Quad
 
class  Quad2d
 
class  Quad2dSubdiv2H
 
class  Quad2dSubdiv2V
 
class  Quad2dSubdiv4
 
class  Quad2dSubdivision
 
class  Quad3d
 
class  QuadCoordinateChange
 Coordinate changes for quadrilateral elements. More...
 
class  QuadCoordinateChange< 3 >
 Coordinate changes for quadrilateral face elements in a parent hexahedron. More...
 
class  QuadNd
 
class  Quadrature
 
class  QuadratureOrder
 
class  QuadratureRule
 
class  QuadratureRule1d
 
class  QuadratureRule1dDynamic
 
class  QuadratureRule1dGaussJacobi
 
class  QuadratureRule1dGaussLobatto
 
class  QuadratureRule1dTrapeze
 
class  QuadratureRule2d
 
class  QuadratureRule2dQuadDuffy
 
class  QuadratureRule2dQuadTensor
 
class  QuadRuleFactory
 
class  QuadRuleFactoryBase2d
 
class  QuadRuleFactoryTensor2d
 
class  QuadRuleFactoryTensorDuffy2d
 
class  QuadSubdiv2H
 
class  QuadSubdiv2V
 
class  QuadSubdiv4
 
class  QuadSubdivision
 
class  RadialPML_2D
 
class  RadialPMLFormulas
 
class  RCP
 
class  RCP< const ElementFormula< F, G > >
 
class  RCP< const Formula< F > >
 
class  RealPart
 
struct  Realtype
 
struct  Realtype< Array< F > >
 
struct  Realtype< Mapping< F, DimY, DimX > >
 
struct  Realtype< Point< F, dim > >
 
struct  Realtype< std::complex< F > >
 
class  RelativeCells
 
class  ResourceMonitor
 Timer and resource monitor. More...
 
class  RestrictionSpace
 
class  ResultsTable
 
class  Rys
 
class  Scan
 
class  Scan< Cell1 >
 A scanner for a 1D mesh. More...
 
class  Scan< Cell2 >
 A scanner for a 2D mesh. More...
 
class  Scan< Cell3 >
 A scanner for a 3D mesh. More...
 
class  Scan< Connector0 >
 A scanner for 0D connectors on the processor intersection (cap) More...
 
class  Scan< Connector1 >
 A scanner for 1D connectors on the processor intersection (cap) More...
 
class  Scan< Connector2 >
 A scanner for 2D connectors on the processor intersection (cap) More...
 
class  Scan< constraints::Element< F > >
 
class  Scan< ElementWithCell< F > >
 
class  Scan< hp1D::BaseElement< F > >
 Scanner of hp1D::Element. More...
 
class  Scan< hp2D::Element< F > >
 Scanner of hp2D::Element. More...
 
class  Scan< hp3D::Element< Real > >
 
class  Scan< linDG3D::FvdgElement >
 Scanner over tetrahedral elements in FV/DG-space. More...
 
class  Scan< linearFEM::Element >
 
class  Scan< linearFEM::Line >
 
class  Scan< linearFEM::Quad >
 
class  Scan< linearFEM::Tetrahedron >
 
class  Scan< linearFEM::Triangle >
 
class  SchurCompl
 
class  Semantics
 
class  Sequence
 
class  Sequence< bool >
 
class  Sequence< Connector0 * >
 
class  Sequence< Connector1 * >
 
class  Sequence< Connector2 * >
 
class  Sequence< const Connector0 * >
 
class  Sequence< const Connector1 * >
 
class  Sequence< const Connector2 * >
 
class  Sequence< const Key * >
 
class  Set
 
class  Set< Attribute >
 
class  Set< Connector * >
 
class  Set< Connector0 * >
 
class  Set< Connector1 * >
 
class  Set< Connector2 * >
 
class  Set< const Connector * >
 
class  Set< const Connector0 * >
 
class  Set< const Connector1 * >
 
class  Set< const Connector2 * >
 
class  Set< const Key * >
 
class  Set< IndexRange >
 
class  ShapeFunction1D
 
class  ShapeFunction1DOrder
 
class  SharedJacobianAdj
 
class  SharedJacobianDet
 
class  ShiftAndInvertOperatorForGEVPs
 
class  Sin_n_phi
 
class  Sin_n_x
 
class  Sin_n_y
 
class  SingletonScan
 
class  SMatrix1D
 
class  SMatrixBase
 
class  SMatrixBlock
 
class  SMatrixCompose
 
class  SMatrixGeneralTensor
 
class  SMatrixTensor
 
class  SolverConjugate
 
class  SolverFabric
 
class  SourceFunctionF0_x
 
class  SourceFunctionF0_y
 
class  Space
 
class  SpaceDebug
 
class  SpaceGraph
 
class  SpaceHelper
 
class  SpaceNotBuilt
 
class  SpaceOnCells
 
class  SpaceOnCoarseCells
 
class  SpacePreBuilder
 
class  SparseMatrix
 
class  Sphere
 
class  Sphere3d
 
struct  SphereMapping
 
class  SphericalFormula
 
class  SphericalFormula< Real >
 
class  SphericalFormula< Real2d >
 
class  SphericalSurface
 
class  SphericalSurface3d
 
class  Spooles
 
class  Square
 
class  Square2
 
class  Squared
 
class  SquareOneInfiniteRect
 
class  SquareTwoInfiniteRects
 
class  Stacktrace
 
class  StiffArray
 
class  StiffArray< 0, F >
 
class  StiffArray< 1, F >
 
class  StlVectorScan
 
class  StraightPeriodicBoundary
 
class  StrategyChange
 
class  Subdivision
 
class  SubMatrix
 
class  SubMatrixN
 
class  Subspace
 
class  SubspaceHelper
 
class  SubVector
 
class  SuperLU
 
class  SuperLUFabric
 
class  Symmetry
 
class  Symmetry< Edge >
 
class  Symmetry< Quad >
 
class  TColumn
 
class  TColumnBlock
 
class  TColumnSet
 
class  TColumnTensor
 
class  TensorVertexMap
 
class  TensorVertexMap< 1 >
 
class  TensorVertexMap< 2 >
 
class  TensorVertexMap< 3 >
 
class  Tetrahedron
 
class  Tetrahedron3d
 
class  TIndex
 
class  TMatrix
 
class  TMatrixBase
 
class  TMatrixBlock
 
class  Transpose
 The transpose of another matrix. More...
 
class  Triangle
 
class  Triangle2d
 
class  Triangle3d
 
class  TrivExtendRestrict
 
class  Umfpack
 
class  UmfpackFabric
 
class  UniformlyRefinedMesh2
 
class  UnitNd
 
class  VecOperator
 
class  Vector
 
class  VectorElementFormula
 
class  VectorElementFormula< F, 2, G >
 
class  VectorElementFormula< F, 3, G >
 
class  VectorElementFormulaBase
 
class  VectorFormula
 
class  Vertex
 
class  VertexData
 
class  VertexQuad2d
 
class  VertexTriangle2d
 
class  WrongInputException
 
class  WrongRelations
 
class  Wsym_x
 
class  Wsym_y
 
class  Wunsym_x
 
class  Wunsym_y
 
class  Z2
 
class  Z3
 
class  Z4
 
class  ZylindricalFormula
 

Typedefs

typedef double Real
 
typedef std::complex< RealCmplx
 Type for a complex number. It also depends on the setting of Real.
 
typedef signed int sint
 Abbreviation for signed int.
 
typedef unsigned char uchar
 Abbreviation for unsigned char.
 
typedef unsigned short ushort
 Abbreviation for unsigned short.
 
typedef Mapping< Real, 2 > MapReal2d
 
typedef Mapping< Real, 3 > MapReal3d
 
typedef Mapping< Cmplx, 2 > MapCmplx2d
 
typedef Mapping< Cmplx, 3 > MapCmplx3d
 
typedef Point< Real, 1 > Real1d
 
typedef Point< Real, 2 > Real2d
 
typedef Point< Real, 3 > Real3d
 
typedef Point< Cmplx, 1 > Cmplx1d
 
typedef Point< Cmplx, 2 > Cmplx2d
 
typedef Point< Cmplx, 3 > Cmplx3d
 
typedef UnitNd< 1 > Unit1d
 
typedef UnitNd< 2 > Unit2d
 
typedef UnitNd< 3 > Unit3d
 
typedef Scan< Cell1Scan1
 A scanner for a 1D mesh.
 
typedef Scan< Cell2Scan2
 A scanner for a 2D mesh.
 
typedef Scan< Cell3Scan3
 A scanner for a 3D mesh.
 
typedef Scan< Connector0ScanCntr0
 
typedef Scan< Connector1ScanCntr1
 
typedef Scan< Connector2ScanCntr2
 
typedef std::set< const std::type_info * > set_info
 

Enumerations

enum  intRule { GAUSS_LOBATTO = 0 , GAUSS_JACOBI = 4 , TRAPEZE = 5 }
 Types of integration rules to choose from. More...
 
enum  Basis { Default = 0 , BND }
 
enum  Optimize { MIN , MAX }
 
enum  dimproj { dimX , dimY , dimZ , dimdiv }
 

Functions

template<class exc >
exc exception_set_fields (exc e, const std::string &file, const unsigned int line, const std::string &function, const std::string &excName)
 
template<class exc >
void exception_throw_assert (const std::string &file, int line, const std::string &function, const std::string &exc_name, const std::string &cond, exc e)
 
template<uint dim>
std::ostream & operator<< (std::ostream &os, const Level< dim > &c)
 
template<class F >
F * newField (uint nr)
 
template<class F >
F & inverse (F &f)
 
template<class F >
inverse (const F &f)
 
template<class F , uint dim>
Mapping< F, dim > & inverse (Mapping< F, dim > &m)
 
template<class F , uint dim>
Mapping< F, dim > inverse (const Mapping< F, dim > &m)
 
template<class F , uint dim>
determinant (const Mapping< F, dim > &m)
 
template<class F , uint dim>
Mapping< F, dim > & adjugate (Mapping< F, dim > &m)
 
template<class F , uint dim>
Mapping< F, dim > adjugate (const Mapping< F, dim > &m)
 
template<class F , class G >
G & product (const F &m, G &v)
 
template<class F , class G >
product (const F &m, const G &v)
 
template<class F , uint dim>
Mapping< F, dim > & prodTranspose (Mapping< F, dim > &m)
 
template<class F , uint dim>
Mapping< F, dim > prodTranspose (const Mapping< F, dim > &m)
 
template<class F , uint dim>
Mapping< F, dim > & transpose (Mapping< F, dim > &m)
 
template<class F , uint dim>
Mapping< F, dim > transpose (const Mapping< F, dim > &m)
 
std::string ensureEnding (const std::string &filename, const std::string ending)
 
std::string demangle (const char *name)
 
template<class T >
std::string typeOf (const T &t)
 
template<typename T >
std::ostream & outputMatlab (std::ostream &os, const T &val)
 
template<typename T >
std::ostream & outputMatlab (std::ostream &os, const std::complex< T > &val)
 
template<class F >
std::ostream & operator<< (std::ostream &os, const std::unique_ptr< F > &p)
 
template<class F , class G >
std::ostream & operator<< (std::ostream &os, const std::pair< F, G > &p)
 
template<class F , class G >
std::ostream & operator<< (std::ostream &os, const std::map< F, G * > &m)
 
template<class F , class G >
std::ostream & operator<< (std::ostream &os, const std::map< F, G > &m)
 
bool isParallelRunning ()
 
template<class F >
void pointerOutput (std::ostream &os, const F &val)
 
template<class F >
void pointerOutput (std::ostream &os, const F *val)
 
template<class F >
void pointerOutput (std::ostream &os, F *val)
 
template<typename F , typename G >
void memorycpy (F *dest, const G *src, size_t n)
 Copies n entries from src to dest (faster than std::memcpy)
 
template<class F , uint dim>
std::ostream & operator<< (std::ostream &os, const Point< F, dim > &p)
 
template<class F , uint dim>
bool operator== (const Point< F, dim > &x, const Point< F, dim > &y)
 
template<class F , uint dim>
Point< typename Combtype< F, Real >::type, dim > operator* (const Real x, const Point< F, dim > &y)
 
template<class F , uint dim>
Point< typename Combtype< F, Cmplx >::type, dim > operator* (const Cmplx x, const Point< F, dim > &y)
 
template<uint dim>
Cmplx operator* (const Point< Cmplx, dim > &a, const Point< Real, dim > &b)
 
template<uint dim>
Cmplx operator* (const Point< Real, dim > &a, const Point< Cmplx, dim > &b)
 
template<class F , uint DimY, uint DimX>
std::ostream & operator<< (std::ostream &os, const Mapping< F, DimY, DimX > &m)
 
Real besselJ0 (const Real x)
 
Real besselY0 (const Real x)
 
Real besselJ1 (const Real x)
 
Real besselY1 (const Real x)
 
Real besselJn (const Real x, const int n)
 Evaluates the Bessel function $J_n(x)$.
 
Sequence< RealbesselJn (const Real x, const Sequence< int > &n)
 Evaluates the Bessel function $J_n(x)$ for several orders.
 
Real besselYn (const Real x, const int n)
 Evaluates the Bessel function $ Y_n(x) $.
 
Cmplx hankel_1_n (const Real x, const int n)
 
Sequence< Cmplxhankel_1_n (const Real x, const Sequence< int > &n)
 
Cmplx hankel_2_n (const Real x, const int n)
 
Sequence< Cmplxhankel_2_n (const Real x, const Sequence< int > &n)
 
Cmplx hankel_1_deriv_n (const Real x, const int n)
 
Sequence< Cmplxhankel_1_deriv_n (const Real x, const Sequence< int > &n)
 
Cmplx hankel_2_deriv_n (const Real x, const int n)
 
Sequence< Cmplxhankel_2_deriv_n (const Real x, const Sequence< int > &n)
 
Frm_Product< Realoperator* (const Formula< Real > &frm, const Real a)
 
Frm_Product< Cmplx, Realoperator* (const Formula< Real > &frm, const Cmplx a)
 
Frm_Product< Cmplx, Cmplx, Realoperator* (const Formula< Cmplx > &frm, const Real a)
 
Frm_Product< Cmplxoperator* (const Formula< Cmplx > &frm, const Cmplx a)
 
Frm_Product< Realoperator* (const Formula< Real > &frm1, const Formula< Real > &frm2)
 
Frm_Product< Cmplx, Realoperator* (const Formula< Real > &frm1, const Formula< Cmplx > &frm2)
 
Frm_Product< Cmplx, Cmplx, Realoperator* (const Formula< Cmplx > &frm1, const Formula< Real > &frm2)
 
Frm_Product< Cmplxoperator* (const Formula< Cmplx > &frm1, const Formula< Cmplx > &frm2)
 
Frm_Sum< Realoperator+ (const Formula< Real > &frm, const Real a)
 
Frm_Sum< Cmplx, Realoperator+ (const Formula< Real > &frm, const Cmplx a)
 
Frm_Sum< Cmplx, Cmplx, Realoperator+ (const Formula< Cmplx > &frm, const Real a)
 
Frm_Sum< Cmplxoperator+ (const Formula< Cmplx > &frm, const Cmplx a)
 
Frm_Sum< Realoperator+ (const Formula< Real > &frm1, const Formula< Real > &frm2)
 
Frm_Sum< Cmplx, Realoperator+ (const Formula< Real > &frm1, const Formula< Cmplx > &frm2)
 
Frm_Sum< Cmplx, Cmplx, Realoperator+ (const Formula< Cmplx > &frm1, const Formula< Real > &frm2)
 
Frm_Sum< Cmplxoperator+ (const Formula< Cmplx > &frm1, const Formula< Cmplx > &frm2)
 
ElementFormulaContainer< Realoperator* (const ElementFormulaContainer< Real > frm, const Real a)
 Simple multiplying of a element formulas by a constant via *-operator.
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Cmplx > frm, const Real a)
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Cmplx > frm, const Cmplx a)
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Real > frm, const Cmplx a)
 
ElementFormulaContainer< Real2doperator* (const ElementFormulaContainer< Real2d > frm, const Real a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx2d > frm, const Real a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx2d > frm, const Cmplx a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Real2d > frm, const Cmplx a)
 
ElementFormulaContainer< Real2doperator* (const ElementFormulaContainer< Real > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx > frm, const Cmplx2d a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Real > frm, const Cmplx2d a)
 
ElementFormulaContainer< MapReal2doperator* (const ElementFormulaContainer< MapReal2d > frm, const Real a)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm, const Real a)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm, const Cmplx a)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< MapReal2d > frm, const Cmplx a)
 
ElementFormulaContainer< MapReal2doperator* (const Real a, const ElementFormulaContainer< MapReal2d > frm)
 
ElementFormulaContainer< MapCmplx2doperator* (const Real a, const ElementFormulaContainer< MapCmplx2d > frm)
 
ElementFormulaContainer< MapCmplx2doperator* (const Cmplx a, const ElementFormulaContainer< MapCmplx2d > frm)
 
ElementFormulaContainer< MapCmplx2doperator* (const Cmplx a, const ElementFormulaContainer< MapReal2d > frm)
 
ElementFormulaContainer< Real2doperator* (const ElementFormulaContainer< MapReal2d > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm, const Cmplx2d a)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< MapReal2d > frm, const Cmplx2d a)
 
ElementFormulaContainer< Realoperator* (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Real > frm2)
 Simple multiplying of two element formulas by *-operator.
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Real2doperator* (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Real2doperator* (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Realoperator* (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Cmplxoperator* (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< MapReal2doperator* (const ElementFormulaContainer< MapReal2d > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< MapReal2d > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< MapReal2doperator* (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< MapReal2d > frm2)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< MapCmplx2d > frm2)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< MapCmplx2d > frm2)
 
ElementFormulaContainer< MapCmplx2doperator* (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< MapReal2d > frm2)
 
ElementFormulaContainer< Real2doperator* (const ElementFormulaContainer< MapReal2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< MapCmplx2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator* (const ElementFormulaContainer< MapReal2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Realoperator/ (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Real > frm2)
 Division of a element formulas by a scalar element formula via /-operator.
 
ElementFormulaContainer< Cmplxoperator/ (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplxoperator/ (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Cmplxoperator/ (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Real2doperator/ (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Real > frm2)
 Division of a vector valued element formulas by a scalar element formula via /-operator.
 
ElementFormulaContainer< Cmplx2doperator/ (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplx2doperator/ (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Cmplx2doperator/ (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Realoperator+ (const ElementFormulaContainer< Real > frm, const Real a)
 Simple adding of a element formulas and a constant via +-operator.
 
ElementFormulaContainer< Cmplxoperator+ (const ElementFormulaContainer< Cmplx > frm, const Real a)
 
ElementFormulaContainer< Cmplxoperator+ (const ElementFormulaContainer< Cmplx > frm, const Cmplx a)
 
ElementFormulaContainer< Cmplxoperator+ (const ElementFormulaContainer< Real > frm, const Cmplx a)
 
ElementFormulaContainer< Real2doperator+ (const ElementFormulaContainer< Real2d > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator+ (const ElementFormulaContainer< Cmplx2d > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator+ (const ElementFormulaContainer< Cmplx2d > frm, const Cmplx2d a)
 
ElementFormulaContainer< Cmplx2doperator+ (const ElementFormulaContainer< Real2d > frm, const Cmplx2d a)
 
ElementFormulaContainer< Realoperator+ (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplxoperator+ (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplxoperator+ (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Cmplxoperator+ (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Real2doperator+ (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator+ (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator+ (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator+ (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Realoperator- (const ElementFormulaContainer< Real > frm, const Real a)
 Simple subtracting of a element formulas and a constant via –operator.
 
ElementFormulaContainer< Cmplxoperator- (const ElementFormulaContainer< Cmplx > frm, const Real a)
 
ElementFormulaContainer< Cmplxoperator- (const ElementFormulaContainer< Cmplx > frm, const Cmplx a)
 
ElementFormulaContainer< Cmplxoperator- (const ElementFormulaContainer< Real > frm, const Cmplx a)
 
ElementFormulaContainer< Real2doperator- (const ElementFormulaContainer< Real2d > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator- (const ElementFormulaContainer< Cmplx2d > frm, const Real2d a)
 
ElementFormulaContainer< Cmplx2doperator- (const ElementFormulaContainer< Cmplx2d > frm, const Cmplx2d a)
 
ElementFormulaContainer< Cmplx2doperator- (const ElementFormulaContainer< Real2d > frm, const Cmplx2d a)
 
ElementFormulaContainer< Realoperator- (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplxoperator- (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Real > frm2)
 
ElementFormulaContainer< Cmplxoperator- (const ElementFormulaContainer< Real > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Cmplxoperator- (const ElementFormulaContainer< Cmplx > frm1, const ElementFormulaContainer< Cmplx > frm2)
 
ElementFormulaContainer< Real2doperator- (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator- (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Real2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator- (const ElementFormulaContainer< Real2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
ElementFormulaContainer< Cmplx2doperator- (const ElementFormulaContainer< Cmplx2d > frm1, const ElementFormulaContainer< Cmplx2d > frm2)
 
template<class F , class G >
void makeArray (const F &cell, const Array< Real > &p, G(F::*fun)(Real) const, Array< G > &array)
 
template<class F , class G >
void makeArray (const F &cell, const Array< Real > &pX, const Array< Real > &pY, G(F::*fun)(Real, Real) const, Array< G > &array, bool istensor=true)
 
template<class F , class G >
void makeArray (const F &cell, const Array< Real > &pX, const Array< Real > &pY, const Array< Real > &pZ, G(F::*fun)(Real, Real, Real) const, Array< G > &array, bool istensor=true)
 
bool operator< (const Cell &cell_x, const Cell &cell_y)
 <-operator could be useful for sorting, e.g. in std::set.
 
std::ostream & operator<< (std::ostream &os, const Triangle2d::Index &i)
 
std::ostream & operator<< (std::ostream &os, const Quad2d::Index &i)
 
std::ostream & operator<< (std::ostream &os, const Triangle3d::Index &i)
 
bool operator< (const Connector &cntr_x, const Connector &cntr_y)
 
template<class F , class G >
Sequence< G * > allConnectors (const F &cntr, G *(F::*fun)(uint) const)
 
template<class F , class G >
void allConnectors (const F &cntr, G *(F::*fun)(uint) const, Set< G * > &set)
 
std::ostream & operator<< (std::ostream &os, const CellData &c)
 
template<uint dimC>
void getChild (const typename JacobianCell< dimC >::cell &cCell, const Point< Real, dimC > &eta, const std::array< Real, std::size_t(dimC)> x0, const std::array< Real, std::size_t(dimC)> xN, const typename JacobianCell< dimC >::cell *&cld)
 
template<class T >
std::ostream & operator<< (std::ostream &os, const std::vector< T * > &field)
 
Import2dMeshGeneralimport2dMeshGeneralFromInput (const InOutParameters input, bool verbose=false)
 
void buildEdgeMesh (Scan2 *sc, const concepts::Set< uint > attrib, MutableMeshBase &emsh)
 
Real3d evaluatepermutation (const Real3d p, const int index)
 
int match (const Connector1 &edg0, const Connector1 &edg1, int idx[])
 
Real quadratureWeightTensor (const Array< QuadratureRule1d * > &ArrayQuad1D, const Array< int > &Index)
 
Array< RealquadratureWeightTensor (const Array< QuadratureRule1d * > &ArrayQuad1D)
 
Mapping< Real, 3, 3 > jacobianTensor (const Hexahedron3d &Hexa, const Real3d &xi)
 
Array< Mapping< Real, 3, 3 > > jacobianTensor (const Hexahedron3d &Hexa, const Array< QuadratureRule1d * > &ArrayQuad1D)
 
Real jacobianDeterminant (const Hexahedron3d &Hexa, const Real3d &xi)
 
Array< RealjacobianDeterminant (const Hexahedron3d &Hexa, const Array< QuadratureRule1d * > &ArrayQuad1D)
 
template<int number>
std::ostream & operator<< (std::ostream &os, const Orders< number > &o)
 
const concepts::Array< RealcomputeKarniadakisValues (uint np, const Real *absc, uint npx, uint type)
 
void JacobiPol (const double alf, const double bet, const int maxn, const double *x, const int m, double *p)
 
void JacobiDerivatives (const double alf, const double bet, const int maxn, const double *x, const int m, const double *p, double *q)
 
void JacobiZeros (double *x, int p, double alf, double bet)
 
void GaussLobattoAbscWght (double *x, double *w, const uint p, const uint j=0)
 
void GaussRadauAbscWght (double *x, double *w, const uint p, const uint j=0)
 
void GaussJacobiAbscWght (double *x, double *w, const uint p)
 
Sequence< CmplxgetHelmholtzDtNCoeff_Circle2D (const Real omega, const Real R, uint N=0)
 
Sequence< RealgetLaplaceDtNCoeff_Circle2D (const Real R, uint N=0)
 
Sequence< RealgetLaplaceDtNCoeff_Straight2D (const Real L, uint N=0)
 
Sequence< CmplxgetHelmholtzDtNCoeff_Straight2D (const Real omega, const Real L, uint N=0)
 
void addExactDtN_Circle2D (Matrix< Real > &dest, const SpaceOnCells< Real > &spc, const Sequence< Real > DtNCoeff)
 
template<class F >
void addExactDtN_Circle2D (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff)
 
void addExactDtN_Circle2D (Matrix< Real > &dest, const SpaceOnCells< Real > &spc, const Sequence< Real > DtNCoeff, Vector< Real > &rhs, const ElementFormula< Real > &frm, const Sequence< Real > DtNCoeffRhs)
 
template<class F , class G >
void addExactDtN_Circle2D (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const ElementFormula< G > &frm, const Sequence< F > DtNCoeffRhs)
 
void addExactDtN_X_2D (Matrix< Real > &dest, const SpaceOnCells< Real > &spc, const Sequence< Real > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_X_2D (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2D (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const ElementFormula< G > &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F >
void addExactDtN_Y_2D (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_Y_2D (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const ElementFormula< G > &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F >
void addExactDtN_Y_2Dsym (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_Y_2Dcos (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_Y_2Dsin (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_Y_2Dunsym (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_Y_2Dcossin (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_Y_2Dsincos (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_X_2Dsym (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_X_2Dcos (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2Dcos (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const ElementFormula< G > &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F >
void addExactDtN_X_2Dsin (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2Dsin (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const ElementFormula< G > &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F >
void addExactDtN_X_2Dunsym (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F >
void addExactDtN_X_2Dcossin (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2Dcossin (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const ElementFormula< G > &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F >
void addExactDtN_X_2Dsincos (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2Dsincos (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const ElementFormula< G > &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
const Cmplx cmplx_i (0, 1)
 
Real sqr (const Real x)
 
int sgn (const Real d)
 
Cmplx visc_ell_fast (const Cmplx lambda, const Real nu, const Real omega, const Real rho0)
 
Cmplx visc_ell_slow (const Cmplx lambda, const Real nu, const Real omega, const Real rho0, const Real c0)
 
Cmplx lambda_limit (const Real omega, const Real c0, const int n, const Real L)
 
template<class F , class G >
void addExactDtN_X_2Dcos_wp (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const G &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2Dsin_wp (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const G &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2Dcossin_wp (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const G &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
template<class F , class G >
void addExactDtN_X_2Dsincos_wp (Matrix< Cmplx > &dest, const SpaceOnCells< Real > &spc, const Sequence< F > DtNCoeff, Vector< Cmplx > &rhs, const G &frm, const Sequence< F > DtNCoeffRhs, const Real L=1.0)
 
concepts::Sequence< CmplxReadEigenValuesFromFile (const int NDtN_given, const std::string Filename)
 
Cmplx lambda_j_fast (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, const uint j)
 
Cmplx lambda_j_slow (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, const uint j)
 
Cmplx g_fast (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, const uint j)
 
Cmplx g_slow (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, const uint j)
 
Sequence< CmplxgetNSDtNCoeff_Straight2D_partDn (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, uint N=0)
 
Sequence< CmplxgetNSDtNCoeff_Straight2D_partDt (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, uint N=1)
 
Sequence< CmplxgetNSDtNCoeff_Straight2D_partDttilde (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, uint N=1)
 
Sequence< CmplxgetNSDtNCoeff_Straight2D_partRn (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, uint N=1)
 
Sequence< CmplxgetNSDtNCoeff_Straight2D_partRntilde (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, uint N=1)
 
Sequence< CmplxgetNSDtNCoeff_Straight2D_partRt (const Real L, const Real omega, const Real c, const Real rho0, const Real nu, uint N=0)
 
Sequence< CmplxgetHelmholtzDtNCoeff_Feng_Circle2D (const Real R, const Real k, unsigned int N)
 
template<class T >
Teuchos::RCP< Belos::SolverManager< T, Tpetra::MultiVector< T, int >, Tpetra::Operator< T > > > createBelosSolverMgr (std::string solverType, const Teuchos::RCP< Teuchos::ParameterList > &solverParam, Teuchos::RCP< Belos::LinearProblem< T, Tpetra::MultiVector< T, int >, Tpetra::Operator< T > > > linearProblem)
 
template<class T >
Teuchos::RCP< Ifpack2::Preconditioner< T > > createIfpackPrec (std::string precType, Teuchos::RCP< Teuchos::ParameterList > precParam, const Teuchos::RCP< const Tpetra::CrsMatrix< T, int > > A)
 
BilinearFormContainer< Realoperator+ (const BilinearFormContainer< Real > frm1, const BilinearFormContainer< Real > frm2)
 
BilinearFormContainer< Cmplxoperator+ (const BilinearFormContainer< Cmplx > frm1, const BilinearFormContainer< Real > frm2)
 
BilinearFormContainer< Cmplxoperator+ (const BilinearFormContainer< Real > frm1, const BilinearFormContainer< Cmplx > frm2)
 
BilinearFormContainer< Cmplxoperator+ (const BilinearFormContainer< Cmplx > frm1, const BilinearFormContainer< Cmplx > frm2)
 
BilinearFormContainer< Realoperator* (const BilinearFormContainer< Real > frm1, const Real w)
 
BilinearFormContainer< Cmplxoperator* (const BilinearFormContainer< Real > frm1, const Cmplx w)
 
BilinearFormContainer< Cmplxoperator* (const BilinearFormContainer< Cmplx > frm1, const Real w)
 
BilinearFormContainer< Cmplxoperator* (const BilinearFormContainer< Cmplx > frm1, const Cmplx w)
 
BilinearFormContainer< Realoperator* (const Real w, const BilinearFormContainer< Real > frm1)
 
BilinearFormContainer< Cmplxoperator* (const Cmplx w, const BilinearFormContainer< Real > frm1)
 
BilinearFormContainer< Cmplxoperator* (const Real w, const BilinearFormContainer< Cmplx > frm1)
 
BilinearFormContainer< Cmplxoperator* (const Cmplx w, const BilinearFormContainer< Cmplx > frm1)
 
BilinearFormContainer< Realoperator- (const BilinearFormContainer< Real > frm1, const BilinearFormContainer< Real > frm2)
 
BilinearFormContainer< Cmplxoperator- (const BilinearFormContainer< Cmplx > frm1, const BilinearFormContainer< Real > frm2)
 
BilinearFormContainer< Cmplxoperator- (const BilinearFormContainer< Real > frm1, const BilinearFormContainer< Cmplx > frm2)
 
BilinearFormContainer< Cmplxoperator- (const BilinearFormContainer< Cmplx > frm1, const BilinearFormContainer< Cmplx > frm2)
 
template<typename F >
void sparseLineToArrays (std::map< int, F > &line, F *a, int *asub)
 
template<class F >
void convertCRS_rowSorting (F &m, typename F::value_type *a, int *asub, int *xa)
 
template<class F >
void convertCCS_rowSorting (F &m, typename F::type *a, int *asub, int *xa)
 
template<class F >
void convertIJK_unSorted (F &m, typename F::type *a, int *irn, int *jcn)
 
template<typename T >
std::ostream & operator<< (std::ostream &os, const HashedSparseMatrix< T > &o)
 
template<class F >
uint getNumberofRows (HashedSparseMatrix< F > &m)
 
template<class F >
uint getNumberofRows (F &m)
 
template<class F , class H , class I >
void apply (Operator< F > &op, const Matrix< H > &mX, Matrix< I > &mY)
 
template<class _Tp , class _Ref , class _Ptr >
bool operator== (const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__x, const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__y)
 
template<class _Tp , class _RefL , class _PtrL , class _RefR , class _PtrR >
bool operator== (const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &__x, const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &__y)
 
template<class _Tp , class _Ref , class _Ptr >
bool operator!= (const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__x, const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__y)
 
template<class _Tp , class _RefL , class _PtrL , class _RefR , class _PtrR >
bool operator!= (const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &__x, const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &__y)
 
template<class _Tp , class _Ref , class _Ptr >
bool operator< (const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__x, const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__y)
 
template<class _Tp , class _RefL , class _PtrL , class _RefR , class _PtrR >
bool operator< (const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &__x, const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &__y)
 
template<class _Tp , class _Ref , class _Ptr >
bool operator> (const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__x, const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__y)
 
template<class _Tp , class _RefL , class _PtrL , class _RefR , class _PtrR >
bool operator> (const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &__x, const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &__y)
 
template<class _Tp , class _Ref , class _Ptr >
bool operator<= (const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__x, const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__y)
 
template<class _Tp , class _RefL , class _PtrL , class _RefR , class _PtrR >
bool operator<= (const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &__x, const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &__y)
 
template<class _Tp , class _Ref , class _Ptr >
bool operator>= (const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__x, const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__y)
 
template<class _Tp , class _RefL , class _PtrL , class _RefR , class _PtrR >
bool operator>= (const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &__x, const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &__y)
 
template<typename _Tp , typename _RefL , typename _PtrL , typename _RefR , typename _PtrR >
_Matrix_iterator_base< _Tp, _RefL, _PtrL >::difference_type operator- (const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &__x, const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &__y)
 
template<class _Tp , class _Ref , class _Ptr >
_Matrix_iterator_base< _Tp, _Ref, _Ptroperator+ (ptrdiff_t __n, const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &__x)
 
template<class F , class G >
F * securePointer (F &value, G *matrix)
 
template<class F , class G >
F * securePointer (const F value, const G *matrix)
 
template<class F , class G , class H >
void matrixMultiplyRowSorting (const F &factL, const G &factR, Matrix< H > &dest)
 
template<class F >
bool storeDenseMatrixToMatlab (F &matrix, const uint nofRows, const uint nofCols, const std::string filename, std::string name="", bool append=false)
 
template<class F >
void storeDenseMatrixToMatlab (F &matrix, const uint nofRows, const uint nofCols, std::ostream &ofs, std::string name="")
 
template<class F >
void storeSparseMatrixToOctave (SparseMatrix< F > &matrix, std::ostream &ofs, std::string name="")
 
template<class F >
std::ostream & operator<< (std::ostream &os, const ElementMatrix< F > &o)
 
template<int dim, class F >
std::ostream & operator<< (std::ostream &os, const AdaptiveControlP< dim, F > &a)
 
template<int dim>
std::ostream & operator<< (std::ostream &os, const AdaptiveAdjustP< dim > &a)
 
template<typename G >
Real integrate (const Element< G > &elm)
 
template<typename F , typename G >
integrate (const ElementWithCell< G > &elm, const ElementFormula< F, G > &frm, const Real t=0.0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
template<class F , typename G >
integrate (const SpaceOnCells< G > &spc, const ElementFormula< F, G > &frm, const Real t=0.0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
template<class F , typename G >
integrate (const Sequence< ElementWithCell< G > * > &elm_seq, const ElementFormula< F, G > &frm, const Real t=0.0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
template<class F , class G >
integrate (const ElementWithCell< G > &elm1, const ElementWithCell< G > &elm2, const ElementFormula< F, G > &frm1, const ElementFormula< F, G > &frm2, const Real t=0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
template<class F , class G >
integrate (const SpaceOnCells< G > &spc1, const SpaceOnCells< G > &spc2, const ElementFormula< F, G > &frm1, const ElementFormula< F, G > &frm2, const Real t=0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
template<typename F , typename G >
Real L2product (const ElementWithCell< G > &elm, const ElementFormula< F, G > &u, const ElementFormula< Real > *c=0, const Real t=0.0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
template<class F , typename G >
Real L2product (SpaceOnCells< F > &spc, const G &u, const ElementFormula< Real > *c=0, const Real t=0.0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
template<class F , typename G >
Real L2product (const Sequence< ElementWithCell< G > * > &elm_seq, const ElementFormula< F, G > &u, const ElementFormula< Real > *c=0, const Real t=0.0, IntegrationCell::intFormType form=IntegrationCell::ZERO)
 
std::ostream & outputMatlab (std::ostream &os, const TMatrix< Real > &T)
 
std::ostream & outputMatlab (std::ostream &os, const TMatrixBase< Real > &T)
 
template<class F >
std::ostream & outputMatlab (std::ostream &os, const ElementMatrix< F > &em)
 
std::ostream & operator<< (std::ostream &os, const AdaptiveControlTag &c)
 
std::ostream & operator<< (std::ostream &os, const IndexRange &i)
 
std::ostream & operator<< (std::ostream &os, const std::map< uint, IndexRange > &map)
 
template<class F >
std::ostream & operator<< (std::ostream &os, const AdaptiveControl< F > &c)
 
template<uint levelDim>
std::ostream & operator<< (std::ostream &os, const AdaptiveAdjust< levelDim > &a)
 
template<class F >
::std::ostream & operator<< (::std::ostream &os, TColumn< F > *T)
 output-operator for pointer to TColumn, gives either 0 or TColumn itself
 
template<class F >
std::ostream & operator<< (std::ostream &os, std::unique_ptr< F > &a)
 
template<class F >
std::ostream & operator<< (std::ostream &os, const Array< F > &o)
 
template<class F >
bool operator== (const Array< F > &x, const Array< F > &y)
 
template<class F >
bool operator== (const Array< F > &x, F &y)
 
template<class F >
bool operator== (F &y, const Array< F > &x)
 
template<class F , class G >
concepts::Array< typename Combtype< F, G >::type > operator* (const concepts::Array< F > &array, const G &val)
 
template<class F , class G >
Array< typename Combtype< F, G >::type > operator* (const G &val, const Array< F > &array)
 
template<class F >
void pointerOutput (std::ostream &os, const Array< F > &array)
 
template<class F >
Array< F > makeArray (std::initializer_list< F > list)
 
void chebychevPoints (concepts::Array< Real > &p)
 
template<class F , uint dim>
Array< F > componentArray (const Array< Point< F, dim > > &a, uint i)
 
template<class FunctionT >
std::shared_ptr< const FunctionTmakeShapeFunction (const concepts::QuadratureRule1d &quadratureRule, const uint polynomialDegree)
 factory function encapsulating the memory manager
 
template<class FunctionT >
std::shared_ptr< const FunctionTmakeQuadrature (const uint nQuadraturePoints, const intRule quadratureType)
 factory function encapsulating the memory manager
 
template<class FunctionT >
std::shared_ptr< const FunctionTmakeAdaptiveQuadrature (const uint nQuadraturePoints, const intRule quadratureType)
 factory function encapsulating the memory manager
 
template<class F >
std::ostream & operator<< (std::ostream &os, const GraphVertex< F > &Value)
 
template<class F >
std::ostream & operator<< (std::ostream &os, const Graph< F > &Value)
 
template<class T , unsigned nlnk>
std::ostream & operator<< (std::ostream &os, const Joiner< T, nlnk > &j)
 
template<class F >
std::istream & operator>> (std::istream &is, BaseSequence< F > &seq)
 
template<class F >
Sequence< F > makeSequence (uint n, const F &first,...)
 
template<class F >
Sequence< F > makeSequence (std::initializer_list< F > list)
 
template<class F >
Sequence< F > makeEquidistantSequence (uint n, const F &first, const F &diff)
 
Sequence< intmakeRangeSequence (uint n)
 Returns the sequence 0,1,...,n-1.
 
Sequence< intmakeRangeSequence (int start, int afterlast)
 Returns the sequence start, start+1,...,afterlast-1.
 
Sequence< intmakeRangeSequence (int start, int afterlast, uint dist)
 
Sequence< intmakeSignAlternatingSequence (uint n)
 Returns the sequence +1,-1, +1,...
 
template<class F , class G >
Sequence< typename Combtype< F, G >::type > operator* (const Sequence< F > seq1, const Sequence< G > seq2)
 
template<class F , class G >
Sequence< typename Combtype< F, G >::type > operator* (const Sequence< F > seq1, const G factor)
 
template<class F , class G >
Sequence< typename Combtype< F, G >::type > operator/ (const Sequence< F > seq1, const Sequence< G > seq2)
 
template<class F , class G >
Sequence< typename Combtype< F, G >::type > operator/ (const Sequence< F > seq1, const G divisor)
 
template<class F >
std::istream & operator>> (std::istream &is, BaseSet< F > &set)
 
template<class F >
Set< F > makeSet (uint n, const F &first,...)
 
template<class F >
Set< F > makeSet (std::initializer_list< F > list)
 
template<class T >
RCP< T > makeRCP (T *x)
 
template<class T >
RCP< T > makeRCP_weak (T *x)
 
template<class T >
RCP< const T > makecRCP_weak (T *x)
 
char tolower (const char ch)
 
std::string stringtolower (const std::string s)
 
std::string removeAllWhite (const std::string str)
 Removes all white space in the string str.
 
std::string getFilename (const std::string str)
 Returns the filename (with ending) of a given full filename.
 
std::string getFilenamePrefix (const std::string str)
 
std::string getDirectory (const std::string str)
 Returns the directory of a given full filename.
 
std::vector< std::string > splitString (const std::string text, const std::string separators)
 
std::vector< std::string > splitStringNameParams (const std::string text)
 
std::vector< std::string > splitStringByComma (const std::string text)
 
template<class F >
std::string stringSubs (const std::string str, const std::string var, F value)
 
Sequence< RealrealSeqFromStringWithPower (const std::string s)
 
Sequence< concepts::Set< uint > > uintSeqSets (const std::string s)
 

Detailed Description

Basic namespace for Concepts-2. Additional modules may be placed in a different namespace (or one which is nested into this one).

file geometry/cellConditions.hh

Boundary conditions

file geometry/connectorSequence.hh

Sets for Connectors.

Todo:
replace explicit occurrences of Pi by a namespace constant
Author
Holger Brandsmeier, ETHZ, 2011
Christian Heier, TUB, 2012

@toolbox/resultsTable.hh

write table of results

Waveprop. Classes for physical sources and formulas for both Cartisian and Radial PML

Typedef Documentation

◆ Cmplx

typedef std::complex<Real> concepts::Cmplx

Type for a complex number. It also depends on the setting of Real.

Examples
arpackppTutorial.cc.

Definition at line 42 of file typedefs.hh.

◆ Cmplx1d

◆ Cmplx2d

◆ Cmplx3d

◆ MapCmplx2d

◆ MapCmplx3d

◆ MapReal2d

Definition at line 625 of file vectorsMatrices.hh.

◆ MapReal3d

Definition at line 626 of file vectorsMatrices.hh.

◆ Real

Type normally used for a floating point number. The idea behind this: if you want to have single or quadruple precision instead of double precision, just change this typdef and recompile.

Definition at line 39 of file typedefs.hh.

◆ Real1d

◆ Real2d

◆ Real3d

◆ Scan1

A scanner for a 1D mesh.

Definition at line 59 of file mesh.hh.

◆ Scan2

A scanner for a 2D mesh.

Definition at line 62 of file mesh.hh.

◆ Scan3

A scanner for a 3D mesh.

Definition at line 65 of file mesh.hh.

◆ ScanCntr0

Definition at line 51 of file mesh_p.hh.

◆ ScanCntr1

Definition at line 52 of file mesh_p.hh.

◆ ScanCntr2

Definition at line 53 of file mesh_p.hh.

◆ set_info

typedef std::set<const std::type_info*> concepts::set_info

Definition at line 23 of file matfileIO.hh.

◆ sint

Abbreviation for signed int.

Definition at line 45 of file typedefs.hh.

◆ uchar

Abbreviation for unsigned char.

Definition at line 48 of file typedefs.hh.

◆ Unit1d

◆ Unit2d

◆ Unit3d

◆ ushort

Abbreviation for unsigned short.

Definition at line 51 of file typedefs.hh.

Enumeration Type Documentation

◆ Basis

Enum representing the basis evaluation type of a Linearform ALL - standard linearform evaluation on all basis functions of a element BND - linearform evaluation just on basisfunctions on the boundary, in 1D : nodal in 2D : nodal and edge basis in 3D : nodal, edge, face this applicates for tensored basis functions on hp2D::Quad only at the moment.

Note that in the BND case for tensored quad the Elementmatrix have different size, i.e. em.size = 2 in 1D, em.size = 2*(elm.px + elm.py) in 2D, ... The order stays first x then y.

Further possible types : INNER, etc..

Definition at line 55 of file linearForm.hh.

◆ dimproj

enum concepts::dimproj

Definition at line 32 of file DtNmap2D_visc.hh.

◆ intRule

Types of integration rules to choose from.

Definition at line 13 of file defines.hh.

◆ Optimize

enum concepts::Optimize

Definition at line 26 of file extrema.hh.

Function Documentation

◆ addExactDtN_Circle2D() [1/2]

template<class F >
void concepts::addExactDtN_Circle2D ( Matrix< Cmplx > &  dest,
const SpaceOnCells< Real > &  spc,
const Sequence< F >  DtNCoeff 
)

Add DtN contribution for a circular boundary

Parameters
destMatrix for the problem formulation
spcSpace defined on the DtN boundary
DtNCoeffcoefficients of the DtN map

◆ addExactDtN_Circle2D() [2/2]

void concepts::addExactDtN_Circle2D ( Matrix< Real > &  dest,
const SpaceOnCells< Real > &  spc,
const Sequence< Real DtNCoeff 
)

Add DtN contribution for a circular boundary

Parameters
destMatrix for the problem formulation
spcSpace defined on the DtN boundary
DtNCoeffcoefficients of the DtN map
Examples
exactDtN.cc.

◆ addExactDtN_X_2Dcos_wp()

template<class F , class G >
void concepts::addExactDtN_X_2Dcos_wp ( Matrix< Cmplx > &  dest,
const SpaceOnCells< Real > &  spc,
const Sequence< F >  DtNCoeff,
Vector< Cmplx > &  rhs,
const G &  frm,
const Sequence< F >  DtNCoeffRhs,
const Real  L = 1.0 
)

Definition at line 214 of file DtNmap2D_visc.hh.

◆ addExactDtN_X_2Dcossin_wp()

template<class F , class G >
void concepts::addExactDtN_X_2Dcossin_wp ( Matrix< Cmplx > &  dest,
const SpaceOnCells< Real > &  spc,
const Sequence< F >  DtNCoeff,
Vector< Cmplx > &  rhs,
const G &  frm,
const Sequence< F >  DtNCoeffRhs,
const Real  L = 1.0 
)

Definition at line 251 of file DtNmap2D_visc.hh.

◆ addExactDtN_X_2Dsin_wp()

template<class F , class G >
void concepts::addExactDtN_X_2Dsin_wp ( Matrix< Cmplx > &  dest,
const SpaceOnCells< Real > &  spc,
const Sequence< F >  DtNCoeff,
Vector< Cmplx > &  rhs,
const G &  frm,
const Sequence< F >  DtNCoeffRhs,
const Real  L = 1.0 
)

Definition at line 233 of file DtNmap2D_visc.hh.

◆ addExactDtN_X_2Dsincos_wp()

template<class F , class G >
void concepts::addExactDtN_X_2Dsincos_wp ( Matrix< Cmplx > &  dest,
const SpaceOnCells< Real > &  spc,
const Sequence< F >  DtNCoeff,
Vector< Cmplx > &  rhs,
const G &  frm,
const Sequence< F >  DtNCoeffRhs,
const Real  L = 1.0 
)

Definition at line 274 of file DtNmap2D_visc.hh.

◆ adjugate() [1/2]

template<class F , uint dim>
Mapping< F, dim > concepts::adjugate ( const Mapping< F, dim > &  m)

Definition at line 33 of file operations.hh.

◆ adjugate() [2/2]

template<class F , uint dim>
Mapping< F, dim > & concepts::adjugate ( Mapping< F, dim > &  m)

Definition at line 30 of file operations.hh.

◆ allConnectors() [1/2]

template<class F , class G >
Sequence< G * > concepts::allConnectors ( const F &  cntr,
G *(F::*)(uint) const  fun 
)

Return all connectors of a particular type of another connector, e.g. all edges of a cell

Sequence<Connector1*> edges = allConnectors(cntr, &Connector2::edge);

Definition at line 126 of file connectorSequence.hh.

◆ allConnectors() [2/2]

template<class F , class G >
void concepts::allConnectors ( const F &  cntr,
G *(F::*)(uint) const  fun,
Set< G * > &  set 
)

Return all connectors of a particular type of another connector, e.g. all edges of a cell

Set<Connector1*> edges;
allConnectors(cntr, &Connector2::edge, edges);

Definition at line 177 of file connectorSet.hh.

◆ apply()

template<class F , class H , class I >
void concepts::apply ( Operator< F > &  op,
const Matrix< H > &  mX,
Matrix< I > &  mY 
)

Multiplication with a matrix.

Decomposes matrix mX into vectors, apply standard application operator of op and adds(!) the resulting vectors to mY.

Author
Kersten Schmidt, 2005

Definition at line 256 of file matrix.hh.

◆ besselJn()

Sequence< Real > concepts::besselJn ( const Real  x,
const Sequence< int > &  n 
)

Evaluates the Bessel function $J_n(x)$ for several orders.

Evaluates the Bessel function $ Y_n(x) $ for several orders.

◆ buildEdgeMesh()

void concepts::buildEdgeMesh ( Scan2 sc,
const concepts::Set< uint attrib,
MutableMeshBase emsh 
)

Construct a mesh of edges of a 2D mesh w.r.t. to particular attributes.

Parameters
scScanner over the cells of the 2D mesh.
attribSet of edge attributes.
emshEdge mesh to which the elements on the edge are added.

Currently work only for Quad2d as they are only provide a method to generate a cell for an edge.

Typical call

concepts::MutableMesh1 edgeMsh;
concepts::Set<uint> eAttrib; eAttrib.insert(2);
concepts::buildEdgeMesh(msh.scan(), eAttrib, edgeMsh);

The mesh on edges takes over the parent-child relationship from the quadrilateral mesh. But, after construction the meshes are independent meaning that refinement in one mesh is not automatically followed by the other.

The topological objects (connectors) are hold outside, most probably by the 2D mesh which must consequently not be deleted.

Author
Kersten Schmidt, 2009

◆ chebychevPoints()

void concepts::chebychevPoints ( concepts::Array< Real > &  p)
inline

Zeros of Chebychev polynomials in [-1,1].

Number of points is given by the size of the array.

Definition at line 130 of file arrayOp.hh.

◆ componentArray()

template<class F , uint dim>
Array< F > concepts::componentArray ( const Array< Point< F, dim > > &  a,
uint  i 
)

Returns the component array of an array of vectors

Parameters
icomponent

Definition at line 145 of file arrayOp.hh.

◆ computeKarniadakisValues()

const concepts::Array< Real > concepts::computeKarniadakisValues ( uint  np,
const Real absc,
uint  npx,
uint  type 
)
inline

Evaluate (transformed) Karniadakis Shapefunctions up to a order np on requested abcissa points in [0,1]. Per standard Karniadakis Shapefunctions are defined on [-1,1]. Here they are given analytical as polynomial transformed on [0,1].

This applicates as following: Let us say we want to evaluate the original shapefunction at the point -1 + eps. For too small eps, we observe cancellation effect due to mashine precision. As a consequence since almost all karniadakis polynomials are zero at -1, they will be evaluated as zero due to the cancelation effect. To avoid this, integration points are computed numerical stable on [0,1], with small values delta around 0. Now the analytical given shapefunctions on [0,1] can be evaluated close to zero, without mentionable cancellation effect.

Note that the second basis function, namely 1-x, as well like almost all derivatives are evaluated with cancellation effect near to zero.

Those evaluations are done by recursion formulas, directly derived from recursion formulas of the jacobian polynomials on [-1,1].

Parameters
npevaluate shapefuntions up to order np, i.e np+1 shapefunctions, that is for np=2 (1-x) x x(1-x)
abscabcissa points in [0,1], must be preallocated
npxnumber of abcissa points
type0 for Karniadakis<1, 0> normal 1 for Karniadakis<1, 1> derivative
Author
Robert Gruhlke, 2014

Definition at line 46 of file karniadakisOp.hh.

◆ convertCCS_rowSorting()

template<class F >
void concepts::convertCCS_rowSorting ( F &  m,
typename F::type *  a,
int asub,
int xa 
)

Method converts a matrix of type F to Sparse Column Storage (CCS) format. The matrix type needs an iterator over the entrances, which moves at least row by row. Inside the row the entrances are sorted by column before writing to the output arrays.

Parameters
mmatrix
aarray of values
asubarray of row indices
xaarrays of column pointers
Author
, Kersten Schmidt, 2005

Definition at line 135 of file CRS.hh.

◆ convertCRS_rowSorting()

template<class F >
void concepts::convertCRS_rowSorting ( F &  m,
typename F::value_type *  a,
int asub,
int xa 
)

Method converts a matrix of type F to Sparse Row Storage (CRS) format. The matrix type needs an iterator over the entrances, which moves at least row by row. Inside the row the entrances are sorted by column before writing to the output arrays.

Parameters
mmatrix
aarray of values
asubarray of column indices
xaarrays of row pointers
Author
, Kersten Schmidt, 2005

Definition at line 88 of file CRS.hh.

◆ convertIJK_unSorted()

template<class F >
void concepts::convertIJK_unSorted ( F &  m,
typename F::type *  a,
int irn,
int jcn 
)

Definition at line 171 of file CRS.hh.

◆ createBelosSolverMgr()

template<class T >
Teuchos::RCP< Belos::SolverManager< T, Tpetra::MultiVector< T, int >, Tpetra::Operator< T > > > concepts::createBelosSolverMgr ( std::string  solverType,
const Teuchos::RCP< Teuchos::ParameterList > &  solverParam,
Teuchos::RCP< Belos::LinearProblem< T, Tpetra::MultiVector< T, int >, Tpetra::Operator< T > > >  linearProblem 
)

Sets the solver type to one of the followings

  • "GMRES"
  • "BLOCKCG"
  • "PSEUDOCG"

Definition at line 36 of file belosSolver_decl.hh.

◆ createIfpackPrec()

template<class T >
Teuchos::RCP< Ifpack2::Preconditioner< T > > concepts::createIfpackPrec ( std::string  precType,
Teuchos::RCP< Teuchos::ParameterList >  precParam,
const Teuchos::RCP< const Tpetra::CrsMatrix< T, int > >  A 
)

precType can assume the following parameters

  • "DIAGONAL"
  • "RELAXATION"
  • "CHEBYSHEV"
  • "ILUT"
  • "RILUK"

Definition at line 87 of file belosSolver_decl.hh.

◆ demangle()

std::string concepts::demangle ( const char name)

Returns the class name of a typeid name return statement. This is a inbuild solution for the |c++filt -t option, when calling the program*

Parameters
nameName of the typeid
Remarks
If the compiler is not gcc, this function returns exactly std::string(name)
Author
Robert Gruhlke, Adrien Semin 2016

◆ determinant()

template<class F , uint dim>
F concepts::determinant ( const Mapping< F, dim > &  m)

Definition at line 27 of file operations.hh.

◆ ensureEnding()

std::string concepts::ensureEnding ( const std::string &  filename,
const std::string  ending 
)

Returns a string with particular ending. Append it, if needed.

Author
Kersten Schmidt, 2005

◆ evaluatepermutation()

Real3d concepts::evaluatepermutation ( const Real3d  p,
const int  index 
)

Evaluation of a 3d permutation

We consider the following evaluation conventions

  • $S_0$ is the identity operator: $S_0(x,y,z) = (x,y,z)$
  • $S_1$ is the (x,y) swap operator: $S_1(x,y,z) = (y,x,z)$
  • $S_2$ is the (x,z) swap operator: $S_2(x,y,z) = (z,y,x)$
  • $S_3$ is the (y,z) swap operator: $S_3(x,y,z) = (x,z,y)$
  • $S_4$ is the (x,y,z) permutation operator: $S_4(x,y,z) = (y,z,x)$
  • $S_5$ is the (x,z,y) permutation operator: $S_5(x,y,z) = (z,x,y)$
Parameters
ppoint to evaluate
indexindex of the permutation

◆ exception_set_fields()

template<class exc >
exc concepts::exception_set_fields ( exc  e,
const std::string &  file,
const unsigned int  line,
const std::string &  function,
const std::string &  excName 
)

Sets fields on exception and throws it. This routine does the main work for the conceptsException macro. This routine should not be called directly, it is used by the conceptsException macro.

Returns
An exception which can then be thrown
Parameters
eException to be thrown
fileFilename where the exception was thrown from
lineLine where the exception was thrown from
functionName of the function that threw the exception
excNameThe name of the exception
See also
conceptsException
ExceptionBase
Author
Philipp Frauenfelder, 2000

Definition at line 316 of file exceptions.hh.

◆ exception_throw_assert()

template<class exc >
void concepts::exception_throw_assert ( const std::string &  file,
int  line,
const std::string &  function,
const std::string &  exc_name,
const std::string &  cond,
exc  e 
)

Sets the fields of an assertion and throws it. This routine does the main work for the exception generation mechanism used in the conceptsAssert macro. This routine should not be called directly, it is used by the conceptsAssert macro.

See also
conceptsAssert
Assertion
Author
Philipp Frauenfelder, 2000

Definition at line 364 of file exceptions.hh.

◆ g_fast()

Cmplx concepts::g_fast ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
const uint  j 
)

Compute the coefficients

\[g_{j,f}\]

Definition at line 80 of file DtNmap2Dvisc.hh.

◆ g_slow()

Cmplx concepts::g_slow ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
const uint  j 
)

Compute the coefficients

\[g_{j,s}\]

Definition at line 101 of file DtNmap2Dvisc.hh.

◆ GaussJacobiAbscWght()

void concepts::GaussJacobiAbscWght ( double x,
double w,
const uint  p 
)

Computes and returns the integration weights and abscissas for the Gauss Jacobi integration. The abscissas no not include the endpoints -1 and 1.

Integration with the quadrature rule

\[ \int_{-1}^1 f(x) \, dx \approx \sum_{i=0}^p w_i f(x_i) \]

is exact for polynomials $f \in P_{2p+1}$.

The abscissas $x_i$ are the zeros of $P_{p+1}^{(0,0)}(x)$ and the weights are

\[w_i = \frac{2}{1-x_i^2} \left( \frac{d}{dx} \left. P^{(0,0)}_{p+1}(x) \right|_{x=x_i} \right)^{-2}.\]

Precondition
The space for the arrays x and w is allocated, size: p+1.
Author
Philipp Frauenfelder, 2001

◆ GaussLobattoAbscWght()

void concepts::GaussLobattoAbscWght ( double x,
double w,
const uint  p,
const uint  j = 0 
)

Computes and returns the integration weights and abscissas for the Gauss (Jacobi) Lobatto integration. The Jacobi version can be chosen with a parameter. The abscissas include both endpoints, ie. 1 and -1.

Integration with the quadrature rule

\[ \int_{-1}^1 f(x) \, dx \approx \sum_{i=0}^p w_i f(x_i) \]

is exact for polynomials $f \in P_{2p-1}$. The Jacobi version integrates

\[ \int_{-1}^1 f(x) (1-x)^j \, dx \approx \sum_{i=0}^p w_i f(x_i) \]

exactly for $f \in P_{2p-1}$.

The abscissas $x_i$ are the zeros of $(1-x^2) P_{p-1}^{(1,1)}(x)$ and the weights are $w_i = 2/(p(p+1) (P_p^{(0,0)}(x_i))^2)$. For the Jacobi version, the abscissas are the zeros of $(1-x^2) P_{p-1}^{(1+j,1)}(x)$ and the weights are $w_i = 2^{1+j}/(p(p+1+j) (P_p^{(j,0)}(x_i))^2)$ and $w_p = (1+j) \cdot 2^{1+j}/(p(p+1+j) (P_p^{(j,0)}(x_i))^2)$.

Parameters
xOutput: the integration abscissas
wOutput: the integration weights
pOrder of the integration, p+1 points are computed
jThe Jacobi version of the integration rule is used if this is non-zero.
Precondition
The space for the arrays x and w is allocated, size: p+1.
Author
Philipp Frauenfelder, 2000

◆ GaussRadauAbscWght()

void concepts::GaussRadauAbscWght ( double x,
double w,
const uint  p,
const uint  j = 0 
)

Computes and returns the integration weights and abscissas for the Gauss Radau Jacobi integration. The Jacobi version can be chosen with a parameter. The abscissas include only one endpoint: -1.

Integration with the quadrature rule

\[ \int_{-1}^1 f(x) \, dx \approx \sum_{i=0}^p w_i f(x_i) \]

is exact for polynomials $f \in P_{2p}$. The Jacobi version integrates

\[ \int_{-1}^1 f(x) (1-x)^j \, dx \approx \sum_{i=0}^p w_i f(x_i) \]

exactly for $f \in P_{2p}$.

The abscissas $x_i$ are the zeros of $(1+x) P_{p}^{(j,1)}(x)$ and the weights are $w_i = 2/((p+1)(p+1+j) (P_p^{(j,0)}(x_i))^2)$.

Parameters
xOutput: the integration abscissas
wOutput: the integration weights
pOrder of the integration, p+1 points are computed
jThe Jacobi version of the integration rule is used if this is non-zero.
Precondition
The space for the arrays x and w is allocated, size: p+1.
Author
Philipp Frauenfelder, 2001

◆ getChild()

template<uint dimC>
void concepts::getChild ( const typename JacobianCell< dimC >::cell &  cCell,
const Point< Real, dimC > &  eta,
const std::array< Real, std::size_t(dimC)>  x0,
const std::array< Real, std::size_t(dimC)>  xN,
const typename JacobianCell< dimC >::cell *&  cld 
)

Searches through the dichotomic tree cell hierachy to find the unique child cell that is defined via the local point eta in [0,1]^dimC

Precondition
the coarse Cells children if existing are preallocated, and introduce pointers
eta is in [0,1]^dimC for speed up

◆ getFilenamePrefix()

std::string concepts::getFilenamePrefix ( const std::string  str)

Returns the prefix of a given full filename, e.g.. "example" for "~/example.dat".

◆ getHelmholtzDtNCoeff_Circle2D()

Sequence< Cmplx > concepts::getHelmholtzDtNCoeff_Circle2D ( const Real  omega,
const Real  R,
uint  N = 0 
)

Returns the coefficients for a non-local DtN map for the Helmholtz operator with frequency omega for a circular boundary of radius R which is truncated at order N.

Parameters
Lwidth of the boundary
Ntruncation order
Examples
exactDtN.cc.

◆ getHelmholtzDtNCoeff_Feng_Circle2D()

Sequence< Cmplx > concepts::getHelmholtzDtNCoeff_Feng_Circle2D ( const Real  R,
const Real  k,
unsigned int  N 
)

Returns the coefficients for a local DtN map of Feng for the Helmholtz equation with wave number k for a circular boundary of radius R of order N for orders 0 to 5.

Parameters
Rradius of the circular domain
kwave number
Norder of Feng's condition (0,1,2,3,4 or 5)

◆ getHelmholtzDtNCoeff_Straight2D()

Sequence< Cmplx > concepts::getHelmholtzDtNCoeff_Straight2D ( const Real  omega,
const Real  L,
uint  N = 0 
)

Returns the coefficients for a non-local DtN map for the Helmholtz operator with frequency omega for a straight boundary of length L which is truncated at order N.

In the strip $[0,L]\times[0,\infty)$ the solution of $-\Delta u - \omega^2 u = 0$ can be written as

\[u(x,y) = a_0 \exp(k_0 y) + \sum_{n=1}^N \left( a_n \cos(2\pi n\frac{x}{L}) + 
                                      b_n \sin(2\pi n\frac{x}{L})\right)
                               \mathrm{e}^{k_n y}
\]

with

\[
a_0 = \frac{1}{L}\int_{0}^L u(x',0) \mathrm{d}x', \\
a_n = \frac{2}{L}\int_{0}^L u(x',0) \cos(2\pi n\frac{x'}{L})\mathrm{d}x', \\
b_n = \frac{2}{L}\int_{0}^L u(x',0) \sin(2\pi n\frac{x'}{L})\mathrm{d}x', \\
k_n = \imath \sqrt{\omega^2 - \Big( \frac{n \pi}{L}\Big)^2}, \quad \omega > \frac{n \pi}{L}, \\
k_n = - \sqrt{\Big( \frac{n \pi}{L}\Big)^2 - \omega^2}, \quad \text{otherwise}.
\]

The normal derivative at $y = 0$ is

\[
\partial_y u(x,0) = a_0 k_0 + 
\sum_{n=1}^N k_n \left( a_n \cos(2\pi n\frac{x}{L}) + 
                                     b_n \sin(2\pi n\frac{x}{L})\right)
\]

and so

\[
\int_0^L \partial_y u(x,0) v(x,0) \mathrm{d}x
= \frac{k_0}{L} \int_0^L u(x',0) \mathrm{d}x' \int_0^L v(x,0) \mathrm{d}x 
+ \sum_{n=1}^N \frac{k_n}{L}\left(
 2\int_{0}^L u(x',0) \cos(2\pi n\frac{x'}{L})\mathrm{d}x'
 \int_{0}^L v(x ,0) \cos(2\pi n\frac{x }{L})\mathrm{d}x +
 2\int_{0}^L u(x',0) \sin(2\pi n\frac{x'}{L})\mathrm{d}x'
 \int_{0}^L v(x ,0) \sin(2\pi n\frac{x }{L})\mathrm{d}x
\right)
\]

The factor 2 is used to have the same coefficients for an derivation with $\exp(2\pi i n \frac{x}{L})$.

Parameters
omegawave pulse
Lwidth of the boundary
Ntruncation order
Author
Kersten Schmidt, 2012

◆ getLaplaceDtNCoeff_Circle2D()

Sequence< Real > concepts::getLaplaceDtNCoeff_Circle2D ( const Real  R,
uint  N = 0 
)

Returns the coefficients for a non-local DtN map for the Laplace operator for a circular boundary of radius R which is truncated at order N.

Parameters
omegawave pulse
Lwidth of the boundary
Ntruncation order

◆ getLaplaceDtNCoeff_Straight2D()

Sequence< Real > concepts::getLaplaceDtNCoeff_Straight2D ( const Real  L,
uint  N = 0 
)

Returns the coefficients for a non-local DtN map for the Laplace operator for a straight boundary of length L which is truncated at order N.

In the strip $[0,L]\times[0,\infty)$ the solution of $-\Delta u = 0$ can be written as

\[u(x,y) = a_0 + \sum_{n=1}^N \left( a_n \cos(2\pi n\frac{x}{L}) + 
                                      b_n \sin(2\pi n\frac{x}{L})\right)
                               \mathrm{e}^{-2\pi n\frac{y}{L}}
\]

with

\[
a_0 = \frac{1}{L}\int_{0}^L u(x',0) \mathrm{d}x'
a_n = \frac{2}{L}\int_{0}^L u(x',0) \cos(2\pi n\frac{x'}{L})\mathrm{d}x',\\
b_n = \frac{2}{L}\int_{0}^L u(x',0) \sin(2\pi n\frac{x'}{L})\mathrm{d}x'.
\]

The normal derivative at $y = 0$ is

\[
\partial_y u(x,0) = 
\sum_{n=1}^N -\frac{2\pi n}{L}\left( a_n \cos(2\pi n\frac{x}{L}) + 
                                     b_n \sin(2\pi n\frac{x}{L})\right)
\]

and so

\[
\int_0^L -\partial_y u(x,0) v(x,0) \mathrm{d}x
= \sum_{n=1}^N \frac{2\pi n}{L^2}\left(
2\int_{0}^L u(x',0) \cos(2\pi n\frac{x'}{L})\mathrm{d}x'
 \int_{0}^L v(x ,0) \cos(2\pi n\frac{x }{L})\mathrm{d}x +
2\int_{0}^L u(x',0) \sin(2\pi n\frac{x'}{L})\mathrm{d}x'
 \int_{0}^L v(x ,0) \sin(2\pi n\frac{x }{L})\mathrm{d}x
\right)
\]

The factor 2 is used to have the same coefficients for an derivation with $\exp(2\pi i n \frac{x}{L})$.

Note, that as for the Laplace problem with pure Neumann boundary conditions the constant may not be defined (DtN coefficient for $a_0$ is zero) and has to be excluded by a mean zero condition.

Parameters
Lwidth of the boundary
Ntruncation order
Author
Kersten Schmidt, 2012

◆ getNSDtNCoeff_Straight2D_partDn()

Sequence< Cmplx > concepts::getNSDtNCoeff_Straight2D_partDn ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
uint  N = 0 
)

Definition at line 123 of file DtNmap2Dvisc.hh.

◆ getNSDtNCoeff_Straight2D_partDt()

Sequence< Cmplx > concepts::getNSDtNCoeff_Straight2D_partDt ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
uint  N = 1 
)

Definition at line 146 of file DtNmap2Dvisc.hh.

◆ getNSDtNCoeff_Straight2D_partDttilde()

Sequence< Cmplx > concepts::getNSDtNCoeff_Straight2D_partDttilde ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
uint  N = 1 
)

Definition at line 169 of file DtNmap2Dvisc.hh.

◆ getNSDtNCoeff_Straight2D_partRn()

Sequence< Cmplx > concepts::getNSDtNCoeff_Straight2D_partRn ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
uint  N = 1 
)

Definition at line 191 of file DtNmap2Dvisc.hh.

◆ getNSDtNCoeff_Straight2D_partRntilde()

Sequence< Cmplx > concepts::getNSDtNCoeff_Straight2D_partRntilde ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
uint  N = 1 
)

Definition at line 214 of file DtNmap2Dvisc.hh.

◆ getNSDtNCoeff_Straight2D_partRt()

Sequence< Cmplx > concepts::getNSDtNCoeff_Straight2D_partRt ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
uint  N = 0 
)

Definition at line 236 of file DtNmap2Dvisc.hh.

◆ getNumberofRows() [1/2]

template<class F >
uint concepts::getNumberofRows ( F &  m)

Definition at line 242 of file matrix.hh.

◆ getNumberofRows() [2/2]

template<class F >
uint concepts::getNumberofRows ( HashedSparseMatrix< F > &  m)

Definition at line 275 of file hashedSMatrix.hh.

◆ hankel_1_deriv_n()

Cmplx concepts::hankel_1_deriv_n ( const Real  x,
const int  n 
)

Evaluates the derivative $ H^{(1)}_n{}'(x) $ of the Hankel function $ H^{(1)}_n(x) = J_n(x) + \mathrm{i}Y_n(x) $.

◆ hankel_1_n()

Cmplx concepts::hankel_1_n ( const Real  x,
const int  n 
)

Evaluates the Hankel function $ H^{(1)}_n(x) = J_n(x) + \mathrm{i}Y_n(x) $.

◆ hankel_2_deriv_n()

Cmplx concepts::hankel_2_deriv_n ( const Real  x,
const int  n 
)

Evaluates the derivative $ H^{(2)}_n{}'(x) $ of the Hankel function $ H^{(2)}_n(x) = J_n(x) - \mathrm{i}Y_n(x) $.

◆ hankel_2_n()

Cmplx concepts::hankel_2_n ( const Real  x,
const int  n 
)

Evaluates the Hankel function $ H^{(2)}_n(x) = J_n(x) - \mathrm{i}Y_n(x) $.

◆ import2dMeshGeneralFromInput()

Import2dMeshGeneral * concepts::import2dMeshGeneralFromInput ( const InOutParameters  input,
bool  verbose = false 
)

Loads a mesh from a paramater list.

The parameter list needs the strings: "inputfilename" - prefix for all file names.

The parameter list may include the strings: "inputpath" - name of the path where the files are inside. If not given, the current working directory (".") is taken.

It will be excepted five files, namely the coordinate, the element, the attribute, the edge radia and the edge correlation file of the following names. Let the prefix be "example". Then, the files are "example_Coord.dat", "example_Elms.dat", "example_Attr.dat", "example_EdgRadia.dat", "example_EdgCorr.dat".

The files have to exist, but may be empty.

Author
Kersten Schmidt, 2009
Examples
cig_load_input_data.cc, and elasticity2D_tutorial.cc.

◆ integrate() [1/6]

template<typename G >
Real concepts::integrate ( const Element< G > &  elm)

Returns the area of the cell belonging to the element elm.

Author
Kersten Schmidt, 2005

Definition at line 43 of file integral.hh.

◆ integrate() [2/6]

template<typename F , typename G >
F concepts::integrate ( const ElementWithCell< G > &  elm,
const ElementFormula< F, G > &  frm,
const Real  t = 0.0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the integral of the element formula frm over the cell belonging to the element elm.

Author
Kersten Schmidt, 2005

Definition at line 64 of file integral.hh.

◆ integrate() [3/6]

template<class F , class G >
F concepts::integrate ( const ElementWithCell< G > &  elm1,
const ElementWithCell< G > &  elm2,
const ElementFormula< F, G > &  frm1,
const ElementFormula< F, G > &  frm2,
const Real  t = 0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the integral over the element elm1 respective elm2 of the product of the ElementFormulas frm1 and frm2. The two elements must use the same topological cells.

Author
Philipp Kliewe, 2013

Definition at line 154 of file integral.hh.

◆ integrate() [4/6]

template<class F , typename G >
F concepts::integrate ( const Sequence< ElementWithCell< G > * > &  elm_seq,
const ElementFormula< F, G > &  frm,
const Real  t = 0.0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the integral over elements in sequence elm_seq of the formula or element formula frm at time t. The integration form is form.

Cells are valid, if they are derivated from IntegrationCell.

See also
IntegrationCell
Author
Maxim Felde, 2015

Definition at line 131 of file integral.hh.

◆ integrate() [5/6]

template<class F , typename G >
F concepts::integrate ( const SpaceOnCells< G > &  spc,
const ElementFormula< F, G > &  frm,
const Real  t = 0.0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the integral over space spc of the formula or element formula frm at time t. The integration form is form.

Spaces are valid, if their elements are derivated from IntegrationCell.

See also
IntegrationCell
Author
Kersten Schmidt, 2005

Definition at line 96 of file integral.hh.

◆ integrate() [6/6]

template<class F , class G >
F concepts::integrate ( const SpaceOnCells< G > &  spc1,
const SpaceOnCells< G > &  spc2,
const ElementFormula< F, G > &  frm1,
const ElementFormula< F, G > &  frm2,
const Real  t = 0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the integral over spc1 respective spc2 of the product of the ElementFormulas frm1 and frm2, where frm1 is given on spc1 and frm2 is given on spc2. The two spaces must use the same topological cells. This method can be used for integrals over interfaces.

Author
Philipp Kliewe, 2013

Definition at line 182 of file integral.hh.

◆ inverse() [1/4]

template<class F >
F concepts::inverse ( const F &  f)

Definition at line 18 of file operations.hh.

◆ inverse() [2/4]

template<class F , uint dim>
Mapping< F, dim > concepts::inverse ( const Mapping< F, dim > &  m)

Definition at line 24 of file operations.hh.

◆ inverse() [3/4]

template<class F >
F & concepts::inverse ( F &  f)

Definition at line 15 of file operations.hh.

◆ inverse() [4/4]

template<class F , uint dim>
Mapping< F, dim > & concepts::inverse ( Mapping< F, dim > &  m)

Definition at line 21 of file operations.hh.

◆ isParallelRunning()

bool concepts::isParallelRunning ( )

Tests if the instruction MPI::Init() was called

Remarks
This method can also be called in sequential compiling, therefore will always return false
Author
Adrien Semin, 2016

◆ jacobianDeterminant() [1/2]

Array< Real > concepts::jacobianDeterminant ( const Hexahedron3d Hexa,
const Array< QuadratureRule1d * > &  ArrayQuad1D 
)

Computes a multi-dimensional Jacobian determinant tensor

Parameters
Hexamapped hexahedron to consider
ArrayQuad1Dpointers to 1D quadratures
Author
Adrien Semin, 2015

◆ jacobianDeterminant() [2/2]

Real concepts::jacobianDeterminant ( const Hexahedron3d Hexa,
const Real3d xi 
)

Computes the Jacobian determinant $J_K = \text{det}(dF_K)$

Parameters
Hexamapped hexahedron to consider
xireference element in the cube $(0,1)^3$
Author
Adrien Semin, 2015

◆ jacobianTensor() [1/2]

Array< Mapping< Real, 3, 3 > > concepts::jacobianTensor ( const Hexahedron3d Hexa,
const Array< QuadratureRule1d * > &  ArrayQuad1D 
)

Computes a multi-dimensional Jacobian tensor

Parameters
Hexamapped hexahedron to consider
ArrayQuad1Dpointers to 1D quadratures
Author
Adrien Semin, 2015

◆ jacobianTensor() [2/2]

Mapping< Real, 3, 3 > concepts::jacobianTensor ( const Hexahedron3d Hexa,
const Real3d xi 
)

Compute the Jacobian tensor $dF_K$ that goes from a reference element $\xi \in (0,1)^3$ to M(3,3)

Parameters
Hexamapped hexahedron to consider
xireference element in the cube $(0,1)^3$
Author
Adrien Semin, 2015

◆ JacobiDerivatives()

void concepts::JacobiDerivatives ( const double  alf,
const double  bet,
const int  maxn,
const double x,
const int  m,
const double p,
double q 
)

Computes the values of the derivatives of the Jacobi polynomials.

$\frac{d}{dx} P^{(\alpha,\beta)}_i (x_j)$ for $i = 0, \dots, maxn$ and $x_j \in x$, $|x| = m$.

Parameters
alf$\alpha$
bet$\beta$
maxnHighest polynomial degree to be computed
xArray of size m with the points in which the polynomials should be evaluated. $x_j \in [-1,1]$.
mSize of array x
pArray of the size m*(maxn+1) filled with the Jacobi polynomials.
qArray of the size m*(maxn+1) (must be allocated), will be filled with the values of the derivatives of the poynomials in the points with i running fastest.
Precondition
The space for the array q is allocated, size: m*(maxn+1)
Author
Philipp Frauenfelder, after the recursion formulae in Karniadakis / Sherwin "Spectral/hp Element Methods for CFD" p. 350f

◆ JacobiPol()

void concepts::JacobiPol ( const double  alf,
const double  bet,
const int  maxn,
const double x,
const int  m,
double p 
)

Computes the values of the Jacobi polynomials.

$P^{(\alpha, \beta)}_i (x_j)$ for $i = 0, \dots, maxn$ and $x_j \in x$, $|x| = m$.

Parameters
alf$\alpha$
bet$\beta$
maxnHighest polynomial degree to be computed
xArray of size m with the points in which the polynomials should be evaluated. $x_j \in [-1,1]$.
mSize of array x
pArray of the size m*(maxn+1) (must be allocated), will be filled with the values of the poynomials in the points with i running fastest.
Precondition
The space for the array p is allocated, size: m*(maxn+1)
Author
Philipp Frauenfelder, after the recursion formulae in Karniadakis / Sherwin "Spectral/hp Element Methods for CFD" p. 350f

◆ JacobiZeros()

void concepts::JacobiZeros ( double x,
int  p,
double  alf,
double  bet 
)

Computes the zeros of the Jacobi polynomials $P_{p}^{(\alpha,\beta)}(x)$.

Parameters
xOutput: the zeros of the Jacobi polynomials in the elements 1, ..., p. The element 0 of the array is untouched.
pDegree of the Jacobi polynomial
alf$\alpha$
bet$\beta$
Precondition
The space for the arrays x is allocated, size: p+1
Author
(C) Copr. 1986-92 Numerical Recipes Software VsXz&52.!-.

◆ L2product() [1/3]

template<typename F , typename G >
Real concepts::L2product ( const ElementWithCell< G > &  elm,
const ElementFormula< F, G > &  u,
const ElementFormula< Real > *  c = 0,
const Real  t = 0.0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the L2 product or with c weighted L2 product of an element formula u over the cell belonging to the element elm.

\[\int\limits_{K}c u^\top\cdot\overline{u}\,dx\]

Author
Kersten Schmidt, 2005
Examples
parallelizationTutorial.cc.

Definition at line 214 of file integral.hh.

◆ L2product() [2/3]

template<class F , typename G >
Real concepts::L2product ( const Sequence< ElementWithCell< G > * > &  elm_seq,
const ElementFormula< F, G > &  u,
const ElementFormula< Real > *  c = 0,
const Real  t = 0.0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the L2 product or with c weighted L2 product of an element formula u over the cells belonging to the elements in the sequence elm_seq.

\[\int\limits_{K}c u^\top\cdot\overline{u}\,dx\]

Author
Maxim Felde, 2015

Definition at line 296 of file integral.hh.

◆ L2product() [3/3]

template<class F , typename G >
Real concepts::L2product ( SpaceOnCells< F > &  spc,
const G &  u,
const ElementFormula< Real > *  c = 0,
const Real  t = 0.0,
IntegrationCell::intFormType  form = IntegrationCell::ZERO 
)

Returns the L2 product or with c weighted L2 product over space spc of the formula or element formula u at time t. The integration form is form.

\[\int\limits_{\Omega}c u^\top\cdot\overline{u}\,dx\]

Spaces are valid, if their elements are derivated from IntegrationCell.

See also
IntegrationCell
Author
Kersten Schmidt, 2005

Definition at line 267 of file integral.hh.

◆ lambda_j_fast()

Cmplx concepts::lambda_j_fast ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
const uint  j 
)

Compute the eigenvalues

\[\lambda_{j,f}\]

Definition at line 30 of file DtNmap2Dvisc.hh.

◆ lambda_j_slow()

Cmplx concepts::lambda_j_slow ( const Real  L,
const Real  omega,
const Real  c,
const Real  rho0,
const Real  nu,
const uint  j 
)

Compute the eigenvalues

\[\lambda_{j,s}\]

Definition at line 55 of file DtNmap2Dvisc.hh.

◆ lambda_limit()

Cmplx concepts::lambda_limit ( const Real  omega,
const Real  c0,
const int  n,
const Real  L 
)

Definition at line 82 of file DtNmap2D_visc.hh.

◆ makeAdaptiveQuadrature()

template<class FunctionT >
std::shared_ptr< const FunctionT > concepts::makeAdaptiveQuadrature ( const uint  nQuadraturePoints,
const intRule  quadratureType 
)

factory function encapsulating the memory manager

FIXME: code factorization

Definition at line 191 of file flyweight.hh.

◆ makeArray() [1/4]

template<class F , class G >
void concepts::makeArray ( const F &  cell,
const Array< Real > &  p,
G(F::*)(Real) const  fun,
Array< G > &  array 
)

Creates an array array by applying an function fun of a cell cell for each value p.

Author
Kersten Schmidt, 2009

Definition at line 24 of file arrays.hh.

◆ makeArray() [2/4]

template<class F , class G >
void concepts::makeArray ( const F &  cell,
const Array< Real > &  pX,
const Array< Real > &  pY,
const Array< Real > &  pZ,
G(F::*)(Real, Real, Real) const  fun,
Array< G > &  array,
bool  istensor = true 
)

Creates an array array by applying an function fun of a cell cell for each combination of the values pX and pY. The fast loop is over pY for tensor basis case.

Also for non tensor case, there is one loop over all integration points (pX(i), pY(i)), i = 0,..., points.

Author
Kersten Schmidt, 2009

Definition at line 79 of file arrays.hh.

◆ makeArray() [3/4]

template<class F , class G >
void concepts::makeArray ( const F &  cell,
const Array< Real > &  pX,
const Array< Real > &  pY,
G(F::*)(Real, Real) const  fun,
Array< G > &  array,
bool  istensor = true 
)

Creates an array array by applying an function fun of a cell cell for each combination of the values pX and pY. The fast loop is over pY for tensor basis case.

Also for non tensor case, there is one loop over all integration points (pX(i), pY(i)), i = 0,..., points.

Author
Kersten Schmidt, 2009

Definition at line 43 of file arrays.hh.

◆ makeArray() [4/4]

template<class F >
Array< F > concepts::makeArray ( std::initializer_list< F >  list)

Creates an array from a comma separated list of values.

For example,

makeArray<int>({2, 3, 6, 7})

creates an array of 4 elements containing [2, 3, 6, 7].

Definition at line 114 of file arrayOp.hh.

◆ makecRCP_weak()

template<class T >
RCP< const T > concepts::makecRCP_weak ( T *  x)

Definition at line 129 of file sharedPointer_boost.hh.

◆ makeEquidistantSequence()

template<class F >
Sequence< F > concepts::makeEquidistantSequence ( uint  n,
const F &  first,
const F &  diff 
)

Definition at line 407 of file sequence.hh.

◆ makeQuadrature()

template<class FunctionT >
std::shared_ptr< const FunctionT > concepts::makeQuadrature ( const uint  nQuadraturePoints,
const intRule  quadratureType 
)

factory function encapsulating the memory manager

Bring here a polymorphic constructor

Definition at line 154 of file flyweight.hh.

◆ makeRangeSequence()

Sequence< int > concepts::makeRangeSequence ( int  start,
int  afterlast,
uint  dist 
)

Returns the sequence start, start+dist,... such that last entry is smaller than afterlast

◆ makeRCP()

template<class T >
RCP< T > concepts::makeRCP ( T *  x)

Function to create a RCP which deletes the object when no RCP points on it anymore.

The function has to be used, if the object is created with new.

For example:

RCP<int>::Type iP = makeRCP(new int(2));
iP.reset();   // deletes the integer 2

Second example:

RCP<int>::Type iP = makeRCP(new int(3)), jP = iP;
jP.reset();   // does not delete the integer 3, as jP points still on it
iP.reset();   // deletes the integer 3, no RCP points on it

Definition at line 102 of file sharedPointer_boost.hh.

◆ makeRCP_weak()

template<class T >
RCP< T > concepts::makeRCP_weak ( T *  x)

Function to create a RCP without deleting the object in the destructor

The function has to be used, if the object remains externally, e.g., in the heap.

For example:

int i = 1;
RCP<int>::Type iP = makeRCP_weak(&i);
iP.reset();   // will not delete the integer 1

Definition at line 122 of file sharedPointer_boost.hh.

◆ makeSequence() [1/2]

template<class F >
Sequence< F > concepts::makeSequence ( std::initializer_list< F >  list)

Creates an sequence of length
from a comma separated list of values.

e.g.

makeSequence(2, 3, 6, 7)

creates an sequence [2, 3, 6, 7]

Definition at line 395 of file sequence.hh.

◆ makeSequence() [2/2]

template<class F >
Sequence< F > concepts::makeSequence ( uint  n,
const F &  first,
  ... 
)

Creates an sequence of length
from a comma separated list of values.

e.g.

makeSequence(4, 2, 3, 6, 7)

creates an sequence [2, 3, 6, 7]

Definition at line 375 of file sequence.hh.

◆ makeSet() [1/2]

template<class F >
Set< F > concepts::makeSet ( std::initializer_list< F >  list)

Creates an array from a comma separated list of values.

e.g.

makeSet({3, 2, 6, 7})

creates an set [2, 3, 6, 7]

Definition at line 339 of file set.hh.

◆ makeSet() [2/2]

template<class F >
Set< F > concepts::makeSet ( uint  n,
const F &  first,
  ... 
)

Creates an array of length
from a comma separated list of values.

e.g.

makeSet(4, 3, 2, 6, 7)

creates an set [2, 3, 6, 7]

Examples
BGT_0.cc, elasticity2D_tutorial.cc, exactDtN.cc, hpFEM2d.cc, meshes.cc, and parallelizationTutorial.cc.

Definition at line 320 of file set.hh.

◆ makeShapeFunction()

template<class FunctionT >
std::shared_ptr< const FunctionT > concepts::makeShapeFunction ( const concepts::QuadratureRule1d quadratureRule,
const uint  polynomialDegree 
)

factory function encapsulating the memory manager

Definition at line 122 of file flyweight.hh.

◆ match()

int concepts::match ( const Connector1 edg0,
const Connector1 edg1,
int  idx[] 
)

Checks, if two edges has a common vertex. In that case the value 1 is returned, and the idx[0]-th vertex of edg0 coincide with the idx[1]-th vertex of edg1.

◆ matrixMultiplyRowSorting()

template<class F , class G , class H >
void concepts::matrixMultiplyRowSorting ( const F &  factL,
const G &  factR,
Matrix< H > &  dest 
)

Multiplies two matrices, which deliver at least a row sorted iterator, and adds (!) the result to a third matrix.

The matrices factL and factR needs the methods nofRows(), nofCols(), begin(row) or begin() respectivly.

Author
Kersten Schmidt, 2005

Definition at line 28 of file matrixMult.hh.

◆ memorycpy()

template<typename F , typename G >
void concepts::memorycpy ( F *  dest,
const G *  src,
size_t  n 
)

Copies n entries from src to dest (faster than std::memcpy)

Definition at line 31 of file vectorsMatrices.hh.

◆ newField()

template<class F >
F * concepts::newField ( uint  nr)
inline

Reserve memory for a field of type F and returns the pointer to first entrance.

Author
Kersten Schmidt, 2005

Definition at line 17 of file memory.hh.

◆ operator!=() [1/2]

template<class _Tp , class _Ref , class _Ptr >
bool concepts::operator!= ( const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __x,
const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __y 
)
inline

Definition at line 150 of file matrixIterator.hh.

◆ operator!=() [2/2]

bool concepts::operator!= ( const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &  __x,
const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &  __y 
)
inline

Definition at line 158 of file matrixIterator.hh.

◆ operator*() [1/9]

Simple multiplication from right

◆ operator*() [2/9]

template<class F , uint dim>
Point< typename Combtype< F, Cmplx >::type, dim > concepts::operator* ( const Cmplx  x,
const Point< F, dim > &  y 
)
inline

Definition at line 246 of file vectorsMatrices.hh.

◆ operator*() [3/9]

template<class F , class G >
concepts::Array< typename Combtype< F, G >::type > concepts::operator* ( const concepts::Array< F > &  array,
const G &  val 
)

Multiplication operator

Returns the product of an array of type F and a value of type G.

Definition at line 360 of file array.hh.

◆ operator*() [4/9]

template<class F , class G >
Array< typename Combtype< F, G >::type > concepts::operator* ( const G &  val,
const Array< F > &  array 
)

Multiplication operator

Returns the product of an a value of type G and an array of type F.

Definition at line 375 of file array.hh.

◆ operator*() [5/9]

template<uint dim>
Cmplx concepts::operator* ( const Point< Cmplx, dim > &  a,
const Point< Real, dim > &  b 
)

Definition at line 252 of file vectorsMatrices.hh.

◆ operator*() [6/9]

template<uint dim>
Cmplx concepts::operator* ( const Point< Real, dim > &  a,
const Point< Cmplx, dim > &  b 
)

Definition at line 261 of file vectorsMatrices.hh.

◆ operator*() [7/9]

template<class F , uint dim>
Point< typename Combtype< F, Real >::type, dim > concepts::operator* ( const Real  x,
const Point< F, dim > &  y 
)
inline

Definition at line 240 of file vectorsMatrices.hh.

◆ operator*() [8/9]

template<class F , class G >
Sequence< typename Combtype< F, G >::type > concepts::operator* ( const Sequence< F >  seq1,
const G  factor 
)

Definition at line 457 of file sequence.hh.

◆ operator*() [9/9]

template<class F , class G >
Sequence< typename Combtype< F, G >::type > concepts::operator* ( const Sequence< F >  seq1,
const Sequence< G >  seq2 
)

Definition at line 439 of file sequence.hh.

◆ operator+() [1/4]

Simple adding two element formulas by +-operator

◆ operator+() [2/4]

Simple adding two element formulas by +-operator

◆ operator+() [3/4]

Frm_Sum< Real > concepts::operator+ ( const Formula< Real > &  frm,
const Real  a 
)

Simple adding two formulas by +-operator

concepts::ParsedFormula<> a("(x+y+z)");
concepts::ParsedFormula<> b("(x+y+2*z)");

std::cout << "a+b = " << a+b << std::endl; 

◆ operator+() [4/4]

Definition at line 249 of file matrixIterator.hh.

◆ operator-() [1/3]

Definition at line 235 of file matrixIterator.hh.

◆ operator-() [2/3]

Simple adding two element formulas by +-operator

◆ operator-() [3/3]

Simple subtracting two element formulas by "-"-operator

◆ operator/() [1/2]

template<class F , class G >
Sequence< typename Combtype< F, G >::type > concepts::operator/ ( const Sequence< F >  seq1,
const G  divisor 
)

Definition at line 484 of file sequence.hh.

◆ operator/() [2/2]

template<class F , class G >
Sequence< typename Combtype< F, G >::type > concepts::operator/ ( const Sequence< F >  seq1,
const Sequence< G >  seq2 
)

Definition at line 470 of file sequence.hh.

◆ operator<() [1/3]

template<class _Tp , class _Ref , class _Ptr >
bool concepts::operator< ( const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __x,
const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __y 
)
inline

Definition at line 165 of file matrixIterator.hh.

◆ operator<() [2/3]

bool concepts::operator< ( const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &  __x,
const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &  __y 
)
inline

Definition at line 175 of file matrixIterator.hh.

◆ operator<() [3/3]

bool concepts::operator< ( const Connector cntr_x,
const Connector cntr_y 
)

<-operator sorted by the key, it could be useful for sorting, e.g. in std::set.

◆ operator<<() [1/18]

template<class F >
::std::ostream & concepts::operator<< ( ::std::ostream &  os,
TColumn< F > *  T 
)

output-operator for pointer to TColumn, gives either 0 or TColumn itself

Definition at line 110 of file tmatrix.hh.

◆ operator<<() [2/18]

template<int dim>
std::ostream & concepts::operator<< ( std::ostream &  os,
const AdaptiveAdjustP< dim > &  a 
)

Definition at line 129 of file hpMethod.hh.

◆ operator<<() [3/18]

template<int dim, class F >
std::ostream & concepts::operator<< ( std::ostream &  os,
const AdaptiveControlP< dim, F > &  a 
)

Definition at line 44 of file hpMethod.hh.

◆ operator<<() [4/18]

template<class F >
std::ostream & concepts::operator<< ( std::ostream &  os,
const Array< F > &  o 
)

Definition at line 319 of file array.hh.

◆ operator<<() [5/18]

template<class F >
std::ostream & concepts::operator<< ( std::ostream &  os,
const ElementMatrix< F > &  o 
)

Definition at line 334 of file element.hh.

◆ operator<<() [6/18]

template<class F >
std::ostream & concepts::operator<< ( std::ostream &  os,
const Graph< F > &  Value 
)

Definition at line 115 of file graph.hh.

◆ operator<<() [7/18]

template<class F >
std::ostream & concepts::operator<< ( std::ostream &  os,
const GraphVertex< F > &  Value 
)

Definition at line 68 of file graph.hh.

◆ operator<<() [8/18]

template<typename T >
std::ostream & concepts::operator<< ( std::ostream &  os,
const HashedSparseMatrix< T > &  o 
)

Definition at line 196 of file hashedSMatrix.hh.

◆ operator<<() [9/18]

template<class T , unsigned nlnk>
std::ostream & concepts::operator<< ( std::ostream &  os,
const Joiner< T, nlnk > &  j 
)

Definition at line 161 of file scannerConnectors.hh.

◆ operator<<() [10/18]

template<class F , uint DimY, uint DimX>
std::ostream & concepts::operator<< ( std::ostream &  os,
const Mapping< F, DimY, DimX > &  m 
)

Definition at line 609 of file vectorsMatrices.hh.

◆ operator<<() [11/18]

template<int number>
std::ostream & concepts::operator<< ( std::ostream &  os,
const Orders< number > &  o 
)

Definition at line 43 of file karniadakis.hh.

◆ operator<<() [12/18]

template<class F , uint dim>
std::ostream & concepts::operator<< ( std::ostream &  os,
const Point< F, dim > &  p 
)

Definition at line 213 of file vectorsMatrices.hh.

◆ operator<<() [13/18]

template<class F , class G >
std::ostream & concepts::operator<< ( std::ostream &  os,
const std::map< F, G * > &  m 
)
protected

Definition at line 79 of file outputOperator.hh.

◆ operator<<() [14/18]

template<class F , class G >
std::ostream & concepts::operator<< ( std::ostream &  os,
const std::map< F, G > &  m 
)
protected

Definition at line 90 of file outputOperator.hh.

◆ operator<<() [15/18]

template<class F , class G >
std::ostream & concepts::operator<< ( std::ostream &  os,
const std::pair< F, G > &  p 
)
protected

Definition at line 72 of file outputOperator.hh.

◆ operator<<() [16/18]

template<class F >
std::ostream & concepts::operator<< ( std::ostream &  os,
const std::unique_ptr< F > &  p 
)

Definition at line 54 of file outputOperator.hh.

◆ operator<<() [17/18]

template<class T >
std::ostream & concepts::operator<< ( std::ostream &  os,
const std::vector< T * > &  field 
)

Definition at line 140 of file meshImport.hh.

◆ operator<<() [18/18]

template<class F >
std::ostream & concepts::operator<< ( std::ostream &  os,
std::unique_ptr< F > &  a 
)

Output operator for unique_ptr's

Definition at line 32 of file array.hh.

◆ operator<=() [1/2]

template<class _Tp , class _Ref , class _Ptr >
bool concepts::operator<= ( const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __x,
const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __y 
)
inline

Definition at line 201 of file matrixIterator.hh.

◆ operator<=() [2/2]

bool concepts::operator<= ( const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &  __x,
const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &  __y 
)
inline

Definition at line 209 of file matrixIterator.hh.

◆ operator==() [1/6]

template<class _Tp , class _Ref , class _Ptr >
bool concepts::operator== ( const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __x,
const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __y 
)
inline

Definition at line 130 of file matrixIterator.hh.

◆ operator==() [2/6]

bool concepts::operator== ( const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &  __x,
const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &  __y 
)
inline

Definition at line 140 of file matrixIterator.hh.

◆ operator==() [3/6]

template<class F >
bool concepts::operator== ( const Array< F > &  x,
const Array< F > &  y 
)
inline

Definition at line 327 of file array.hh.

◆ operator==() [4/6]

template<class F >
bool concepts::operator== ( const Array< F > &  x,
F &  y 
)
inline

Definition at line 338 of file array.hh.

◆ operator==() [5/6]

template<class F , uint dim>
bool concepts::operator== ( const Point< F, dim > &  x,
const Point< F, dim > &  y 
)
inline

Definition at line 231 of file vectorsMatrices.hh.

◆ operator==() [6/6]

template<class F >
bool concepts::operator== ( F &  y,
const Array< F > &  x 
)
inline

Definition at line 348 of file array.hh.

◆ operator>() [1/2]

template<class _Tp , class _Ref , class _Ptr >
bool concepts::operator> ( const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __x,
const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __y 
)
inline

Definition at line 186 of file matrixIterator.hh.

◆ operator>() [2/2]

bool concepts::operator> ( const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &  __x,
const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &  __y 
)
inline

Definition at line 194 of file matrixIterator.hh.

◆ operator>=() [1/2]

template<class _Tp , class _Ref , class _Ptr >
bool concepts::operator>= ( const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __x,
const _Matrix_iterator_base< _Tp, _Ref, _Ptr > &  __y 
)
inline

Definition at line 218 of file matrixIterator.hh.

◆ operator>=() [2/2]

bool concepts::operator>= ( const _Matrix_iterator_base< _Tp, _RefL, _PtrL > &  __x,
const _Matrix_iterator_base< _Tp, _RefR, _PtrR > &  __y 
)
inline

Definition at line 226 of file matrixIterator.hh.

◆ operator>>() [1/2]

template<class F >
std::istream & concepts::operator>> ( std::istream &  is,
BaseSequence< F > &  seq 
)

Definition at line 133 of file sequence.hh.

◆ operator>>() [2/2]

template<class F >
std::istream & concepts::operator>> ( std::istream &  is,
BaseSet< F > &  set 
)

Definition at line 134 of file set.hh.

◆ outputMatlab() [1/5]

template<class F >
std::ostream & concepts::outputMatlab ( std::ostream &  os,
const ElementMatrix< F > &  em 
)
inline

Function for output of ElementMatrix to Matlab

example use: outputMatlab(std::cout << "M = ",M) << std::endl;

Definition at line 88 of file outputMatlab.hh.

◆ outputMatlab() [2/5]

template<typename T >
std::ostream & concepts::outputMatlab ( std::ostream &  os,
const std::complex< T > &  val 
)

Definition at line 36 of file outputMatlab.hh.

◆ outputMatlab() [3/5]

template<typename T >
std::ostream & concepts::outputMatlab ( std::ostream &  os,
const T &  val 
)

Function for output of basic types to matlab

example use: outputMatlab(std::cout << "x = ",x) << std::endl;

Definition at line 30 of file outputMatlab.hh.

◆ outputMatlab() [4/5]

std::ostream & concepts::outputMatlab ( std::ostream &  os,
const TMatrix< Real > &  T 
)
inline

Function for output of T-Matrix to Matlab.

example use: outputMatlab(std::cout << "T = ",T) << std::endl;

Definition at line 22 of file outputMatlab.hh.

◆ outputMatlab() [5/5]

std::ostream & concepts::outputMatlab ( std::ostream &  os,
const TMatrixBase< Real > &  T 
)
inline

Function for output of T-Matrix base class to Matlab.

example use: outputMatlab(std::cout << "T = ",T) << std::endl;

Definition at line 73 of file outputMatlab.hh.

◆ pointerOutput() [1/4]

template<class F >
void concepts::pointerOutput ( std::ostream &  os,
const Array< F > &  array 
)

Definition at line 387 of file array.hh.

◆ pointerOutput() [2/4]

template<class F >
void concepts::pointerOutput ( std::ostream &  os,
const F &  val 
)

Definition at line 16 of file pointerOutput.hh.

◆ pointerOutput() [3/4]

template<class F >
void concepts::pointerOutput ( std::ostream &  os,
const F *  val 
)

Definition at line 21 of file pointerOutput.hh.

◆ pointerOutput() [4/4]

template<class F >
void concepts::pointerOutput ( std::ostream &  os,
F *  val 
)

Definition at line 27 of file pointerOutput.hh.

◆ prodTranspose() [1/2]

template<class F , uint dim>
Mapping< F, dim > concepts::prodTranspose ( const Mapping< F, dim > &  m)

Definition at line 50 of file operations.hh.

◆ prodTranspose() [2/2]

template<class F , uint dim>
Mapping< F, dim > & concepts::prodTranspose ( Mapping< F, dim > &  m)

Definition at line 46 of file operations.hh.

◆ product() [1/2]

template<class F , class G >
G concepts::product ( const F &  m,
const G &  v 
)

Definition at line 41 of file operations.hh.

◆ product() [2/2]

template<class F , class G >
G & concepts::product ( const F &  m,
G &  v 
)

Definition at line 36 of file operations.hh.

◆ quadratureWeightTensor() [1/2]

Array< Real > concepts::quadratureWeightTensor ( const Array< QuadratureRule1d * > &  ArrayQuad1D)

Computes a multi-dimensional quadrature weight tensor

Parameters
ArrayQuad1Dpointers to 1D quadratures
Author
Adrien Semin, 2015

◆ quadratureWeightTensor() [2/2]

Real concepts::quadratureWeightTensor ( const Array< QuadratureRule1d * > &  ArrayQuad1D,
const Array< int > &  Index 
)

Compute a quadrature weight tensor at a partical index point

Parameters
ArrayQuad1Dpointers to 1D quadratures
Indexindex to compute
Author
Adrien Semin, 2015

◆ ReadEigenValuesFromFile()

concepts::Sequence< Cmplx > concepts::ReadEigenValuesFromFile ( const int  NDtN_given,
const std::string  Filename 
)

Definition at line 762 of file DtNmap2D_visc.hh.

◆ realSeqFromStringWithPower()

Sequence< Real > concepts::realSeqFromStringWithPower ( const std::string  s)

Converts a string to a sequence of real numbers, where a power may be allowed to express, e.g., negative powers of 2.

The string "1.0 2e-8 2p-2" results in Sequence(1, 2e-08, 0.25)

◆ securePointer() [1/2]

template<class F , class G >
F * concepts::securePointer ( const F  value,
const G *  matrix 
)

Definition at line 265 of file matrixIterator.hh.

◆ securePointer() [2/2]

template<class F , class G >
F * concepts::securePointer ( F &  value,
G *  matrix 
)

Templated function, which prevent a pointer to a temporary value got from constant matrices with index operator .

Author
Kersten Schmidt, 2005

Definition at line 262 of file matrixIterator.hh.

◆ sgn()

int concepts::sgn ( const Real  d)

Definition at line 37 of file DtNmap2D_visc.hh.

◆ sparseLineToArrays()

template<typename F >
void concepts::sparseLineToArrays ( std::map< int, F > &  line,
F *  a,
int asub 
)

This function converts a sparse line to an array of values and an array of indices.

Author
, Kersten Schmidt, 2005

Definition at line 63 of file CRS.hh.

◆ splitString()

std::vector< std::string > concepts::splitString ( const std::string  text,
const std::string  separators 
)

Split the string text string into words, where the separation token are included in separators.

◆ splitStringByComma()

std::vector< std::string > concepts::splitStringByComma ( const std::string  text)

Split a strings in words separated by commas while respecting the bracket hierachies.

It splits "Ellipse(1.0, 4), Circle()" into "Ellipse(1.0, 4)" and "Circle()".

◆ splitStringNameParams()

std::vector< std::string > concepts::splitStringNameParams ( const std::string  text)

Split a string like "Ellipse(1.0, 4)" into "Ellipse", "1.0", "4".

◆ sqr()

Real concepts::sqr ( const Real  x)

Definition at line 27 of file DtNmap2D_visc.hh.

◆ storeDenseMatrixToMatlab() [1/2]

template<class F >
bool concepts::storeDenseMatrixToMatlab ( F &  matrix,
const uint  nofRows,
const uint  nofCols,
const std::string  filename,
std::string  name = "",
bool  append = false 
)

Stores a matrix to the matlab file filename as dense matrix name. If append is false, overwrite old file, if already existed.

Its applicable for any concepts::Matrix and for concepts::ElementMatrix as well.

Returns
true if the writing to the file was successfull
Author
Kersten Schmidt, 2005

Definition at line 32 of file outputMatlab.hh.

◆ storeDenseMatrixToMatlab() [2/2]

template<class F >
void concepts::storeDenseMatrixToMatlab ( F &  matrix,
const uint  nofRows,
const uint  nofCols,
std::ostream &  ofs,
std::string  name = "" 
)

Writes a matrix to the stream ofs as dense matrix name in Matlab format.

Its applicable for any concepts::Matrix and for concepts::ElementMatrix as well.

Returns
true if the writing to the file was successfull
Author
Kersten Schmidt, 2005

Definition at line 62 of file outputMatlab.hh.

◆ storeSparseMatrixToOctave()

template<class F >
void concepts::storeSparseMatrixToOctave ( SparseMatrix< F > &  matrix,
std::ostream &  ofs,
std::string  name = "" 
)

Writes a matrix to the stream ofs as dense matrix name in Octave format (older version don't have sparse matrix format).

Its applicable for any concepts::Matrix and for concepts::HashedSMatrix as well.

Returns
true if the writing to the file was successfull
Author
Kersten Schmidt, 2005

Definition at line 98 of file outputMatlab.hh.

◆ stringSubs()

template<class F >
std::string concepts::stringSubs ( const std::string  str,
const std::string  var,
value 
)

Substitute all occurances of a substring var of a string str by value which may be for example a real or another string.

Definition at line 81 of file stringFunc.hh.

◆ transpose() [1/2]

template<class F , uint dim>
Mapping< F, dim > concepts::transpose ( const Mapping< F, dim > &  m)

Definition at line 58 of file operations.hh.

◆ transpose() [2/2]

template<class F , uint dim>
Mapping< F, dim > & concepts::transpose ( Mapping< F, dim > &  m)

Definition at line 54 of file operations.hh.

◆ typeOf()

template<class T >
std::string concepts::typeOf ( const T &  t)

Return the typeid name of a class object

Parameters
tObject whose type has to be determined
Author
Robert Gruhlke, Adrien Semin 2016

Definition at line 43 of file output.hh.

◆ uintSeqSets()

Sequence< concepts::Set< uint > > concepts::uintSeqSets ( const std::string  s)

Converts a string to a sequence of sets of uint.

The numbers in each set are separated by a comma, whereas the differents sets are separated by a semicolon.

The string "1, 2, 3; 4" results in Sequence(Set(1,2,3), Set(4))

◆ visc_ell_fast()

Cmplx concepts::visc_ell_fast ( const Cmplx  lambda,
const Real  nu,
const Real  omega,
const Real  rho0 
)

Definition at line 44 of file DtNmap2D_visc.hh.

◆ visc_ell_slow()

Cmplx concepts::visc_ell_slow ( const Cmplx  lambda,
const Real  nu,
const Real  omega,
const Real  rho0,
const Real  c0 
)

Definition at line 63 of file DtNmap2D_visc.hh.