#include <levelRieszElement.hh>
Public Member Functions | |
LevelRieszElement (const hp2D::Element< Real > &elm, const concepts::ElementFormulaContainer< Real > &levelFunction, const concepts::ElementFormulaContainer< Real2d > &levelFunctionGrad, const concepts::ElementFormulaContainer< Real > &observable) | |
~LevelRieszElement () | |
void | operator() (const concepts::Element< Real > &elm, concepts::ElementMatrix< Real > &em) const |
virtual void | operator() (const Element< typename Realtype< concepts::Real >::type > &elm, ElementMatrix< concepts::Real > &em) const=0 |
Protected Member Functions | |
virtual std::ostream & | info (std::ostream &os) const |
Returns information in an output stream. | |
This class creates a linearform corresponding to the local contribution of one cell to the integral:
,
where \psi is a given 2D-function (must take values between 0 and 1 !) and f the function to be integrated.
These integrals, called geometric coefficients, are computed for all y in [0,1] via a Galerkin-projection on a polynomial space. As polynomials spaces one can choose the space of orthonormal Legendre-polynomials (hp1D::hpAdaptiveSpaceL2) or the space of Karniadakis-polynomials (hp1D::Space).
Definition at line 34 of file levelRieszElement.hh.
hp1D::LevelRieszElement::LevelRieszElement | ( | const hp2D::Element< Real > & | elm, |
const concepts::ElementFormulaContainer< Real > & | levelFunction, | ||
const concepts::ElementFormulaContainer< Real2d > & | levelFunctionGrad, | ||
const concepts::ElementFormulaContainer< Real > & | observable | ||
) |
Constructor
elm | a 2D-element |
levelFunction | levelset function. must take values in [0,1] |
levelFunctionGrad | gradient of levelset function |
observable | integrand over level sets of levelFunction |
hp1D::LevelRieszElement::~LevelRieszElement | ( | ) |
Destructor
|
protectedvirtual |
Returns information in an output stream.
Reimplemented from concepts::LinearForm< concepts::Real >.
|
pure virtualinherited |
Computes the element contribution to the function.
elm | Element on which the computations should be performed |
em | The local matrix |