Class documentation of Concepts

Loading...
Searching...
No Matches
hp3D::Advection< F > Class Template Referenceabstract

#include <bilinearForm.hh>

Inheritance diagram for hp3D::Advection< F >:
concepts::BilinearForm< F, G > hp3D::LinearFormHelper_1< F > concepts::Cloneable concepts::OutputOperator

Public Member Functions

 Advection (const concepts::ElementFormulaContainer< F > frm1, const concepts::ElementFormulaContainer< F > frm2, const concepts::ElementFormulaContainer< F > frm3, bool all=false)
 
 Advection (const concepts::ElementFormulaContainer< concepts::Point< F, 3 > > frm, bool all=false)
 
virtual Advection< F > * clone () const
 
virtual void operator() (const concepts::Element< Real > &elmX, const concepts::Element< Real > &elmY, concepts::ElementMatrix< F > &em) const
 
virtual void operator() (const Element< G > &elmX, const Element< G > &elmY, ElementMatrix< F > &em) const =0
 
virtual void operator() (const Element< G > &elmX, const Element< G > &elmY, ElementMatrix< F > &em, const ElementPair< G > &ep) const
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 Returns information in an output stream.
 
void computeIntermediate_ (const Hexahedron &elm) const
 

Protected Attributes

ArrayElementFormula< concepts::Point< F, 3 > > intermediateVector_
 
concepts::ElementFormulaContainer< concepts::Point< F, 3 > > frm_
 ElementFormula.
 

Detailed Description

template<class F = Real>
class hp3D::Advection< F >

A function class to calculate element matrices of the bilinear form

\[
\int\limits_{K} \underline{k}^\top u \; \nabla{v} \; d\xi
 = \int\limits_{\hat{K}} \underline{k}^\top \hat{u} \; 
 J^{-\top}\;\nabla{\hat{v}} \;|\det J| \; d\hat{\xi}.
 \]

Here k is an arbitrary vector-valued function with coefficients. For some k, the resulting matrix might be singular, e.g. k=[0,0].

Author
Kersten Schmidt, 2014

Definition at line 186 of file bilinearForm.hh.

Constructor & Destructor Documentation

◆ Advection() [1/2]

template<class F = Real>
hp3D::Advection< F >::Advection ( const concepts::ElementFormulaContainer< F >  frm1,
const concepts::ElementFormulaContainer< F >  frm2,
const concepts::ElementFormulaContainer< F >  frm3,
bool  all = false 
)
inline

Definition at line 190 of file bilinearForm.hh.

◆ Advection() [2/2]

template<class F = Real>
hp3D::Advection< F >::Advection ( const concepts::ElementFormulaContainer< concepts::Point< F, 3 > >  frm,
bool  all = false 
)
inline

Definition at line 197 of file bilinearForm.hh.

◆ ~Advection()

template<class F = Real>
virtual hp3D::Advection< F >::~Advection ( )
inlinevirtual

Definition at line 203 of file bilinearForm.hh.

Member Function Documentation

◆ clone()

template<class F = Real>
virtual Advection< F > * hp3D::Advection< F >::clone ( ) const
inlinevirtual

Virtual constructor. Returns a pointer to a copy of itself. The caller is responsible to destroy this copy.

Implements concepts::BilinearForm< F, G >.

Definition at line 205 of file bilinearForm.hh.

◆ computeIntermediate_()

template<class F >
void hp3D::LinearFormHelper_1< F >::computeIntermediate_ ( const Hexahedron elm) const
protectedinherited

Compute the intermediate data for element matrix computation

This method is important for the derivated linear forms.

◆ info()

template<class F = Real>
virtual std::ostream & hp3D::Advection< F >::info ( std::ostream &  os) const
protectedvirtual

Returns information in an output stream.

Reimplemented from concepts::BilinearForm< F, G >.

◆ operator()() [1/2]

template<class F , class G = typename Realtype<F>::type>
virtual void concepts::BilinearForm< F, G >::operator() ( const Element< G > &  elmX,
const Element< G > &  elmY,
ElementMatrix< F > &  em 
) const
pure virtualinherited

Evaluates the bilinear form for all shape functions on elmX and elmY and stores the result in the matrix em.

Postcondition
The returned matrix em has the correct size.
Parameters
elmXLeft element (test functions)
elmYRight element (trial functions)
emReturn element matrix

Implemented in vectorial::BilinearForm< F, G >, concepts::BilinearFormLiCo< F, G >, concepts::BilinearFormContainer< F, G >, concepts::BilinearF_Sum< F, H, J, G >, and concepts::BilinearF_W< F, H, J, G >.

◆ operator()() [2/2]

template<class F , class G = typename Realtype<F>::type>
virtual void concepts::BilinearForm< F, G >::operator() ( const Element< G > &  elmX,
const Element< G > &  elmY,
ElementMatrix< F > &  em,
const ElementPair< G > &  ep 
) const
inlinevirtualinherited

Evaluates the bilinear form for all shape functions on elmX and elmY and stores the result in the matrix em. If this method is not reimplemented in a derived class, the default behaviour is to call the application operator without ep.

Postcondition
The returned matrix em has the correct size.
Parameters
elmXLeft element
elmYRight element
emReturn element matrix
epElement pair holding more information on the pair elmX and elmY

Reimplemented in vectorial::BilinearForm< F, G >.

Definition at line 57 of file bilinearForm.hh.

Member Data Documentation

◆ frm_

template<class F >
concepts::ElementFormulaContainer<concepts::Point<F, 3> > hp3D::LinearFormHelper_1< F >::frm_
protectedinherited

ElementFormula.

Definition at line 88 of file linearFormHelper.hh.

◆ intermediateVector_

template<class F >
ArrayElementFormula<concepts::Point<F,3> > hp3D::LinearFormHelper_1< F >::intermediateVector_
mutableprotectedinherited

Intermediate vector (on each quadrature point)

\[\underline{f}(F_K(\xi))^\top \mbox{adj}(J)^\top\]

Definition at line 85 of file linearFormHelper.hh.


The documentation for this class was generated from the following file: