Class documentation of Concepts

Loading...
Searching...
No Matches
concepts::KarniadakisNew< type, mode > Class Template Referenceabstract
Inheritance diagram for concepts::KarniadakisNew< type, mode >:
concepts::ShapeFunction1D< Real > concepts::OutputOperator

Public Member Functions

 KarniadakisNew (const int P, const QuadratureRule1d &quadrature, const int Q=0, const int R=0)
 
 KarniadakisNew (const int P, const Array< Real > &abscissas, const int Q=0, const int R=0)
 
 KarniadakisNew (const KarniadakisNew< type, mode > &Other)
 
 ~KarniadakisNew ()
 Destructor.
 
uint n () const
 Returns the number of shape functions.
 
uint nP () const
 
const Realvalues () const
 Returns the values of the shape functions.
 

Protected Member Functions

void init (const int P, const Real *xPoints, const int NxP, const int Q, const int R)
 
virtual std::ostream & info (std::ostream &os) const=0
 Returns information in an output stream.
 

Protected Attributes

Realvalues_
 Values of the shape functions.
 

Detailed Description

template<int type, int mode>
class concepts::KarniadakisNew< type, mode >

Definition at line 22 of file karniadakisnew.hh.

Constructor & Destructor Documentation

◆ KarniadakisNew() [1/3]

template<int type, int mode>
concepts::KarniadakisNew< type, mode >::KarniadakisNew ( const int  P,
const QuadratureRule1d quadrature,
const int  Q = 0,
const int  R = 0 
)

Constructor. Computes the values of the principal function of the given order and in the given points.

Parameters
POrder of the principal function in $\eta_1$
quadratureQuadrature
QOrder of the principal function in $\eta_2$
ROrder of the principal function in $\eta_3$
cacheControls if the computed values should be taken from and stored in the cache

◆ KarniadakisNew() [2/3]

template<int type, int mode>
concepts::KarniadakisNew< type, mode >::KarniadakisNew ( const int  P,
const Array< Real > &  abscissas,
const int  Q = 0,
const int  R = 0 
)

Constructor. Computes the values of the principal function of the given order and in the given points.

Parameters
POrder of the principal function in $\eta_1$
abscissasarray of points
QOrder of the principal function in $\eta_2$
ROrder of the principal function in $\eta_3$
cacheControls if the computed values should be taken from and stored in the cache

◆ KarniadakisNew() [3/3]

template<int type, int mode>
concepts::KarniadakisNew< type, mode >::KarniadakisNew ( const KarniadakisNew< type, mode > &  Other)

Copy constructor

Parameters
OtherElement to be copied

Member Function Documentation

◆ info()

◆ init()

template<int type, int mode>
void concepts::KarniadakisNew< type, mode >::init ( const int  P,
const Real xPoints,
const int  NxP,
const int  Q,
const int  R 
)
protected

Computes the values of the principal function of the given order and in the given points.

(P+1)*(Q+1)*(R+1) is the number of shape functions which have to be computed in NxP points.

Parameters
POrder of the principal function in $\eta_1$
xPointsPoints
NxPNumber of points
QOrder of the principal function in $\eta_2$
ROrder of the principal function in $\eta_3$

◆ n()

uint concepts::ShapeFunction1D< Real >::n ( ) const
inlineinherited

Returns the number of shape functions.

Definition at line 35 of file shapefunction.hh.

◆ nP()

uint concepts::ShapeFunction1D< Real >::nP ( ) const
inlineinherited

Returns the number of abscissas (in which the shape functions are evaluated)

Definition at line 38 of file shapefunction.hh.

◆ values()

const Real * concepts::ShapeFunction1D< Real >::values ( ) const
inlineinherited

Returns the values of the shape functions.

Definition at line 40 of file shapefunction.hh.

Member Data Documentation

◆ values_

Real * concepts::ShapeFunction1D< Real >::values_
protectedinherited

Values of the shape functions.

Definition at line 45 of file shapefunction.hh.


The documentation for this class was generated from the following file: