@section intro Introduction In this tutorial the implementation of the so called exact Dirichlet-to-Neumann map for scattering problems on a disc is shown. The equation solved is the 2D Helmholtz equation \f[ - \nabla \cdot \alpha \nabla u - \beta u = 0 \f] on the disc \f$ \Omega = \{\mathbf{x}=(x,y)\in\mathbb{R}^2 \mid r=\sqrt{x^2+y^2} < R\} \f$ of radius \f$ R \f$, where the coefficient functions \f$ \alpha(x) \f$ and \f$ \beta(x) \f$ depend on whether the TE or TM mode is considered. In the TE-case, i.e. \f$ u \f$ corresponds to the third component of the magnetic field, \f$ \alpha \f$ and \f$ \beta \f$ are given by \f[ \alpha = \frac{1}{\epsilon}, \qquad \beta = \omega^2 \mu, \f] with the permittivity \f$ \epsilon \f$, the permeability \f$ \mu \f$ and the frequency \f$ \omega \f$. On the other hand, in the TM-case, i.e. \f$ u \f$ corresponds to the third component of the electric field, \f$ \alpha \f$ and \f$ \beta \f$ are given by \f[ \alpha \equiv 1, \qquad \beta = \omega^2 \epsilon \mu. \f] In the exterior domain \f$ \Omega^{\rm ext} = \mathbb{R}^2\setminus\Omega \f$ the total field \f$ u^{\rm ext} \f$ can be split into a known incoming field \f$ u^{\rm inc} \f$ and an unknown scattered field \f$ u^{\rm sc} \f$, i.e. \f[ u^{\rm ext} = u^{\rm inc} + u^{\rm sc}. \f] The coefficient functions \f$ \alpha \f$ and \f$ \beta \f$ are assumed to be constant in \f$ \Omega^{\rm ext} \f$. We will denote the constant values of the coefficient functions by \f$ \alpha_0 \f$ and \f$ \beta_0 \f$ and they are defined according to the definitions above \f$ \epsilon \equiv \epsilon_0 \f$ and \f$ \mu \equiv \mu_0 \f$ where \f$ \epsilon_0 \f$ denotes the the vacuum permittivity and \f$ \mu_0 \f$ denotes the vacuum permeability. Finally we assume the total field \f$ u \f$ and its co-normal derivative \f$ \alpha \nabla u \cdot \mathbf{n} \f$ to be continuous over \f$ \partial\Omega \f$. We will suppose for now that there exists an appropriate Dirichlet-to-Neumann (DtN) mapping \f$ B \f$ for the scattered field \f$ u^{sc} \f$ on the boundary \f$ \partial\Omega \f$, i.e. \f[ \nabla u^{\rm sc} \cdot \mathbf{n} = B u^{\rm sc} \qquad \text{on }\partial\Omega, \f] In the tutorial @ref BGT_0.cc "BGT_0.cc" this mapping was given by the BGT-0 boundary condition \f$ B = {\rm i} k_0 \f$. In the section <a href="#DtN">Dirichlet-to-Neumann Mapping</a> we will see how to construct such a linear DtN mapping that can be regarded as "exact". @section variation Variational Formulation Now we derive the corresponding variational formulation of the introduced problem: find \f$ u\in H^1(\Omega) \f$ such that \f[ \int_{\Omega}\alpha \nabla u \cdot \nabla v\;{\rm d}\mathbf{x} - \int_{\Omega}\beta uv\;{\rm d}\mathbf{x} - \int_{\partial\Omega} \alpha \nabla u \cdot \mathbf{n} v \;{\rm d}s(\mathbf{x}) = 0 \qquad\forall v\in H^1(\Omega). \f] Considering its continuity over \f$ \partial\Omega \f$ the co-normal of the total field \f$ u \f$ can be written in the form \f[ \alpha\nabla u\cdot \mathbf{n} = \alpha_0\nabla u^{\rm ext} \cdot \mathbf{n} \qquad \text{on }\partial\Omega. \f] Using the fact that the total field in the exterior domain can be split into an incoming field and a scattered field, and incorporating the DtN mapping \f$ B \f$ gives \f[ \alpha \nabla u \cdot \mathbf{n} = \alpha_0 \left( B u^{\rm sc} + \nabla u^{\rm inc} \cdot \mathbf{n} \right) \qquad \text{on }\partial\Omega. \f] Now we use the linearity of the DtN mapping \f$ B \f$ and the continuity of the total field \f$ u \f$ over \f$ \partial\Omega \f$ to obtain \f[ \alpha \nabla u \cdot \mathbf{n} = \alpha_0 \left( B u^{\rm ext} - B u^{\rm inc} + \nabla u^{\rm inc} \cdot \mathbf{n} \right) = \alpha_0 \left( B u - B u^{\rm inc} + \nabla u^{\rm inc} \cdot \mathbf{n} \right) \qquad \text{on }\partial\Omega. \f] Incorporating this into the variational formulation yields \f[ \int_{\Omega}\alpha \nabla u \cdot \nabla v\;{\rm d}\mathbf{x} - \int_{\Omega}\beta uv\;{\rm d}\mathbf{x} - \alpha_0\int_{\partial\Omega} B u\,v \;{\rm d}s(\mathbf{x}) = \alpha_0\int_{\partial\Omega} \left(\nabla u^{\rm inc} \cdot \mathbf{n} - B u^{\rm inc}\right) v \;{\rm d}s(\mathbf{x}) \qquad\forall v\in H^1(\Omega). \f] @section DtN Dirichlet-to-Neumann Mapping In this section we want derive the exact DtN mapping for scattering problems on a disc. Since the total field \f$ u \f$ and the incoming field \f$ u^{\rm inc} \f$ are supposed to satisfy the Helmholtz equation in the exterior domain \f$ \Omega^{\rm ext} \f$, the scattered field \f$ u^{\rm sc} \f$ also satisfies the Helmholtz equation in \f$ \Omega^{\rm ext} \f$, i.e. we have \f[ - \Delta u^{\rm sc} - k_0^2 u^{\rm sc} = 0 \qquad \text{in }\Omega^{\rm ext} \f] with the wave number \f$ k_0 = \omega\sqrt{\epsilon_0\mu_0} \f$ for both, the TE-case and the TM-case. Rewriting this equation in polar coordinates \f$ (r,\phi) \f$ gives \f[ -\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u^{\rm sc}}{\partial r}\right) -\frac{1}{r^2}\frac{\partial^2 u^{\rm sc}}{\partial \phi^2} -k_0^2 u^{\rm sc} =0. \f] Using the approach \f$ u^{\rm sc}(r,\phi) = \sum_{n\in\mathbb{Z}}u^{\rm sc}_n(r)e^{{\rm i}n\phi} \f$, that is based on the Fourier expansion in \f$ \phi \f$, we get \f[ \sum_{n\in\mathbb{Z}}\left[ -\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_n^{\rm sc}(r)}{\partial r}\right)e^{{\rm i}n\phi} -\frac{1}{r^2}u_n^{\rm sc}(r)\frac{\partial^2 e^{{\rm i}n\phi}}{\partial \phi^2} -k_0^2 u_n^{\rm sc}(r)e^{{\rm i}n\phi} \right] = 0, \f] i.e. \f[ \sum_{n\in\mathbb{Z}}\left[ -\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_n^{\rm sc}(r)}{\partial r}\right) +\frac{n^2}{r^2}u_n^{\rm sc}(r) -k_0^2 u_n^{\rm sc}(r) \right]e^{{\rm i}n\phi} = 0, \f] Since \f$ e^{{\rm i}n\phi} \f$, \f$ n\in\mathbb{Z} \f$, are mutually linear independent, we have \f[ -\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u_n^{\rm sc}(r)}{\partial r}\right) +\frac{n^2}{r^2}u_n^{\rm sc}(r) -k_0^2 u_n^{\rm sc}(r) =0 \qquad \forall n\in\mathbb{Z} \f] and thus \f[ r^2\frac{\partial^2}{\partial r^2}u_n^{\rm sc}(r) +r\frac{\partial}{\partial r}u_n^{\rm sc}(r) +\left(r^2 k_0^2 - n^2\right)u_n^{\rm sc}(r) =0 \qquad \forall n\in\mathbb{Z}. \f] By substituting \f$ \rho = k_0 r \f$ we arrive at the Bessel differential equation \f[ \rho^2\frac{\partial^2}{\partial \rho^2}u_n^{\rm sc}(\rho) +\rho\frac{\partial}{\partial \rho}u_n^{\rm sc}(\rho) +\left(\rho^2 - n^2\right)u_n^{\rm sc}(\rho) =0 \qquad \forall n\in\mathbb{Z}. \f] The solutions to this equation define the Bessel functions \f$ J_n \f$ of the first kind and the Bessel functions \f$ Y_n \f$ of the second kind. As the Bessel differential equation is linear, any linear combination of the Bessel functions \f$ J_n \f$ and \f$ Y_n \f$ solve the equation. In particular, we can choose the Hankel functions \f$ H^{(1)}_n \equiv J_n + {\rm i} Y_n \f$. In the limit \f$ r\rightarrow\infty \f$ the Hankel functions behave like \f$ \sqrt{\frac{2}{\pi k_0 r}}e^{{\rm i} k_0 r - n\pi/2-\pi/4} \f$ <a href="#references">[1]</a> and thus, they satisfy the Sommerfeld radiation condition \f[ \lim_{r\rightarrow\infty}\sqrt{r}\left(\frac{\partial u^{\rm sc}}{\partial r} - {\rm i}k_0 u^{\rm sc}\right)=0, \f] c.f. <a href="#references">[2]</a>. Taking the Hankel functions \f$ H^{(1)}_n \f$ as basis for \f$ u_n^{\rm sc} \f$ we can write the scattered field in the form \f[ u^{\rm sc}(r,\phi) = \sum_{n\in\mathbb{Z}} a_n H_n(k_0 r) e^{{\rm i} n\phi} \f] and its derivative \f[ \frac{\partial}{\partial r} u^{\rm sc}(r,\phi) = \sum_{n\in\mathbb{Z}} a_n k_0 H_n'(k_0 r) e^{{\rm i} n\phi}. \f] In particular, we have \f[ u^{\rm sc}(R,\phi) = \sum_{n\in\mathbb{Z}} a_n H_n(k_0 R) e^{{\rm i} n\phi} \f] and by multiplying with \f$ e^{-{\rm i}m\phi} \f$, \f$ m\in\mathbb{Z} \f$ and integrating over \f$ [0,2\pi] \f$ we arrive at \f[ \int_0^{2\pi} u^{\rm sc}(R,\phi) e^{-{\rm i}m\phi} {\rm d}\phi = 2\pi a_{m} H_{m}(k_0 R) \f] where we used the orthogonality of \f$ e^{{\rm i}n\phi} \f$, \f$ n\in\mathbb{Z} \f$. Thus, we obtain \f[ a_{m} = \frac{1}{2\pi}\frac{1}{H_m(k_0 R)}\int_0^{2\pi}u(R,\phi)e^{-{\rm i}m\phi}{\rm d}\phi, \f] and \f$ \frac{\partial}{\partial r} u^{\rm sc}(R,\phi) \f$ can written as \f[ \frac{\partial}{\partial r} u^{\rm sc}(R,\phi) = \frac{k_0}{2\pi}\sum_{n\in\mathbb{Z}}\int_0^{2\pi}u(R,\psi)e^{-{\rm i}n\psi}{\rm d}\psi\; \frac{H_n'(k_0 R)}{H_n(k_0 R)}e^{{\rm i}n\phi}. \f] This is our sought DtN mapping which we can incorporate into the boundary integral \f[ \int_{\partial\Omega} (Bu)v {\rm d}s(\mathbf{x}) = \frac{k_0}{2\pi R}\sum_{n\in\mathbb{Z}}\frac{H_n'(k_0 R)}{H_n(k_0 R)} \int_{\partial\Omega} v(\mathbf{x})e^{{\rm i}n\phi(\mathbf{x})} {\rm d}s(\mathbf{x}) \int_{\partial\Omega} u(\mathbf{x})e^{-{\rm i}n\phi(\mathbf{x})} {\rm d}s(\mathbf{x}). \f] @dontinclude exactDtN.cc @section commented Commented Program First, system files @until iostream and concepts files @skip basics @until models/DtNmap2D are included. With the following using directives @skip using @until using @until using we do not need to prepend <tt>concepts::</tt> to <tt>Real</tt> and <tt>Cmplx</tt> everytime. <!-- @subsection class Class integrandF Before starting with the main program we define a class <tt>integrandF</tt> derived from <tt>concepts::Formula</tt> in order to evaluate \f$ e^{{\rm i}n\phi(\mathbf{x})} \f$ at \f$ \mathbf{x}\in\partial\Omega \f$ for different values of \f$ n\in\mathbb{Z} \f$. Since \f$ |n| \f$ is usually very small (in the implementation below we have \f$ -5 \leq n\leq 5 \f$) we evaluate the value of \f$ e^{{\rm i}n\phi(\mathbf{x})} \f$ by simply computing \f$ e^{{\rm i}n\phi(\mathbf{x})} = \left(\cos(\phi(\mathbf{x}))+{\rm i}\sin(\phi(\mathbf{x}))\right)^n = \left(x/r+{\rm i}\,y/r\right)^n. \f$ @skip class @until private: @until os @until } --> @subsection main Main Program We start the main program @skip int @until try by setting the values of the parameters @skip Real @until DtNmaxN and defining the attributes of the boundary, the area of the scatterer and the surrounding area respectively. @skip uint @until attr0 We specify whether the TE-case or the TM-case is computed. @skip enum @until mode Then we declare the coefficients <tt>alpha0</tt>, <tt>alphaSc</tt>, <tt>beta0</tt> and <tt>betaSc</tt> as complex numbers @skip Cmplx @until betaSc and assign their values according to the chosen mode, i.e. in the TE-mode we have @skip if @until } and in the TM-mode we write @skip if @until } With these values we define \f$ \alpha \f$ and \f$ \beta \f$ as <tt>PiecewiseConstFormula</tt> @skip concepts @until beta0 Now we compute the wave number in the exterior domain @skip const @until Real and introduce the incoming field \f$ u^{\rm inc} = e^{{\rm i} k_0 x} \f$ and its normal gradient \f$ \nabla u^{\rm inc} \cdot \mathbf{n}\f$ as <tt>ParsedFormula</tt>. @skip std::stringstream @until concepts::ParsedFormula @until concepts::ParsedFormula The mesh is created as a circle surrounded by a ring. @skip Real @until endl Now the mesh is plotted using a scaling factor of 100, a greyscale of 1.0 and 20 points per edge. @until drawMeshEPS The space is built by refining the mesh once and setting the polynomial degree to 10. Then the elements of the space are built and the space is plotted. @skip hp2D @until drawMeshEPS Now the trace space of the boundary \f$ \partial\Omega \f$ can be built. @skip hp2D @until endl The right hand side @skip hp1D @until concepts::Vector and the system matrix @skip concepts::SparseMatrix @until M.addInto without DtN part are computed. Now we add the the DtN sum to the system matrix and the right hand side vector. To this end, we first compute the coefficients \f[ -\frac{k_0}{2\pi R} \frac{H_n'(k_0 R)}{H_n(k_0 R)} \f] using <tt> getHelmholtzDtNCoeff_Circle2D </tt> @skip concepts::Sequence @until concepts::getHelmholtzDtNCoeff_Circle2D where we use \f[ H_n'(k_0 R) = H_{n-1}(k_0 R) - \frac{n}{k_0 R}H_n(k_0 R), \f] c.f. Eq. 9.1.27 in <a href="#references">[1]</a>. Then we add the term \f$- \alpha_0\int_{\partial\Omega} B u\,v \;{\rm d}s(\mathbf{x}) \f$ to the system matrix <tt> S </tt> and the term \f$- \alpha_0\int_{\partial\Omega} B u^{\rm inc}\,v \;{\rm d}s(\mathbf{x}) \f$ to the right hand side vector <tt> rhs </tt> using <tt> addExactDtN_Circle2D </tt> @until concepts::addExactDtN_Circle2D The system matrix including the DtN part is displayed @skip std::cout @until endl and the system is solved using the direct solver SuperLU. @skip concepts::SuperLU @until solver @until concepts::Vector @until solver In order to plot the solution the shape functions are computed on equidistant points using the trapezoidal quadrature rule. @skip hp2D @until graphics::MatlabBinaryGraphics Finally, exceptions are caught and a sane return value is given back. @skip } @until return @until return @until } @section results Results Output of the program: @code Mesh: Circle(ncell = 13, cells: Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(0), (Vertex(Key(0)), Vertex(Key(1)), Vertex(Key(2)), Vertex(Key(3))), Attribute(21)), vtx = [<2>(0.5, 0), <2>(0, 0.5), <2>(-0.5, 0), <2>(0, -0.5)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(1), (Vertex(Key(1)), Vertex(Key(0)), Vertex(Key(4)), Vertex(Key(5))), Attribute(21)), vtx = [<2>(0, 0.5), <2>(0.5, 0), <2>(1, 0), <2>(0, 1)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(2), (Vertex(Key(2)), Vertex(Key(1)), Vertex(Key(5)), Vertex(Key(6))), Attribute(21)), vtx = [<2>(-0.5, 0), <2>(0, 0.5), <2>(0, 1), <2>(-1, 0)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(3), (Vertex(Key(3)), Vertex(Key(2)), Vertex(Key(6)), Vertex(Key(7))), Attribute(21)), vtx = [<2>(0, -0.5), <2>(-0.5, 0), <2>(-1, 0), <2>(0, -1)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(4), (Vertex(Key(0)), Vertex(Key(3)), Vertex(Key(7)), Vertex(Key(4))), Attribute(21)), vtx = [<2>(0.5, 0), <2>(0, -0.5), <2>(0, -1), <2>(1, 0)]),
Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(5), (Vertex(Key(5)), Vertex(Key(4)), Vertex(Key(8)), Vertex(Key(9))), Attribute(22)), vtx = [<2>(0, 1), <2>(1, 0), <2>(8, 0), <2>(0, 8)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(6), (Vertex(Key(6)), Vertex(Key(5)), Vertex(Key(9)), Vertex(Key(10))), Attribute(22)), vtx = [<2>(-1, 0), <2>(0, 1), <2>(0, 8), <2>(-8, 0)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(7), (Vertex(Key(7)), Vertex(Key(6)), Vertex(Key(10)), Vertex(Key(11))), Attribute(22)), vtx = [<2>(0, -1), <2>(-1, 0), <2>(-8, 0), <2>(0, -8)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(8), (Vertex(Key(4)), Vertex(Key(7)), Vertex(Key(11)), Vertex(Key(8))), Attribute(22)), vtx = [<2>(1, 0), <2>(0, -1), <2>(0, -8), <2>(8, 0)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(9), (Vertex(Key(9)), Vertex(Key(8)), Vertex(Key(12)), Vertex(Key(13))), Attribute(22)), vtx = [<2>(0, 8), <2>(8, 0), <2>(15, 0), <2>(0, 15)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key( 10), (Vertex(Key(10)), Vertex(Key(9)), Vertex(Key(13)), Vertex(Key(14))), Attribute(22)), vtx = [<2>(-8, 0), <2>(0, 8), <2>(0, 15), <2>(-15, 0)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(11), (Vertex(Key(11)), Vertex(Key(10)), Vertex(Key(14)), Vertex(Key(15))), Attribute(22)), vtx = [<2>(0, -8), <2>(-8, 0), <2>(-15, 0), <2>(0, -15)]), Quad2d(idx = Level<2>(0, 0); 0, 0), cntr = Quad(Key(12), (Vertex(Key(8)), Vertex(Key(11)), Vertex(Key(15)), Vertex(Key(12))), Attribute(22)), vtx = [<2>(8, 0), <2>(0, -8), <2>(0, -15), <2>(15, 0)]))
Space: hpAdaptiveSpaceH1(dim = 5241 (V:57, E:972, I:4212), nelm = 52) Trace Space: TraceSpace(QuadEdgeFirst(), dim = 5241, nelm = 8) System Matrix: SparseMatrix(5241x5241, HashedSparseMatrix: 754721 (2.74763%) entries bound.) Solver: SuperLU(n = 5241) @endcode Plot of the refined mesh: <img src="exactDtN_mesh.png" alt="Mesh output"> Matlab plots of the total field \f$ u \f$: <img src="exactDtN.png" alt="Matlab output"> @section references References [1] M. Abramowitz, and I.A. Stegun (ed.), "Handbook of mathematical functions with formulas, graphs, and mathematical tables", National Bureau of Standards, Applied Mathematics Series 55, tenth printing, 1972. [2] A. Sommerfeld, "Partial Differential Equations in Physics - Lectures on Theoretical Physics Volume VI", Academic Press, New York, 1964. @section complete Complete Source Code @author Dirk Klindworth, 2011/2012