Class documentation of Concepts

Loading...
Searching...
No Matches

The following two types are shape function mixins. More...

#include <element.hh>

Inheritance diagram for hp1D::KarniadakisMixin< F >:
hp1D::BaseElement< F > concepts::ElementWithCell< F > hp1D::IntegrableElm concepts::Element< F > concepts::IntegrationCell concepts::OutputOperator

Public Types

typedef F FieldT
 
typedef F type
 
enum  intFormType { ZERO , ONE , TWO , THREE }
 

Public Member Functions

 KarniadakisMixin (const concepts::EdgeNd &cell, ushort p)
 
void recomputeShapefunctions () override
 
const concepts::Karniadakis< 1, 0 > * shpfct () const override
 Returns the shape functions.
 
const concepts::Karniadakis< 1, 1 > * shpfctD () const
 Returns the derivatives of the shape functions.
 
const concepts::Karniadakis< 1, 2 > * shpfctDD () const
 Returns the second derivatives of the shape functions.
 
virtual const concepts::Edgesupport () const
 
virtual concepts::Real3d vertex (uint i) const
 
virtual const concepts::EdgeNdcell () const
 Returns the cell on which the element is built.
 
ushort p () const
 
virtual const concepts::ElementGraphics< Real > * graphics () const
 Returns element graphics class.
 
Real3d elemMap (const Real coord_local) const
 
Real3d elemMap (const Real2d &coord_local) const
 
Real3d elemMap (const Real3d &coord_local) const
 
virtual const TMatrixBase< F > & T () const =0
 Returns the T matrix of the element.
 
uint & tag ()
 Returns the tag.
 
const concepts::Real3d chi (const Real x) const
 
Real jacobianDeterminant (const Real x) const
 Computes the determinant of the Jacobian.
 
const concepts::QuadratureRule1dintegration () const
 Returns the integration rule.
 
virtual bool quadraturePoint (uint i, intPoint &p, intFormType form=ZERO, bool localCoord=false) const
 

Static Public Member Functions

static concepts::QuadRuleFactoryrule ()
 

Protected Member Functions

virtual std::ostream & info (std::ostream &os) const
 Returns information in an output stream.
 

Protected Attributes

ushort p_
 T matrix of the element.
 
const concepts::EdgeNdcell_
 The cell.
 
std::unique_ptr< concepts::QuadratureRule1dint_
 The integration rule.
 

Static Protected Attributes

static std::unique_ptr< LineGraphicsgraphics_
 
static concepts::QuadRuleFactory rule_
 

Detailed Description

template<class F>
class hp1D::KarniadakisMixin< F >

The following two types are shape function mixins.

Karniadakis shape functions mixin

Author
Lukas Drescher 2015

Definition at line 137 of file element.hh.

Member Typedef Documentation

◆ FieldT

template<class F >
typedef F hp1D::BaseElement< F >::FieldT
inherited

Definition at line 82 of file element.hh.

◆ type

template<typename F >
typedef F concepts::ElementWithCell< F >::type
inherited

Definition at line 81 of file element.hh.

Member Enumeration Documentation

◆ intFormType

Integration form, which determines terms coming from integration over reference element

Definition at line 29 of file integral.hh.

Constructor & Destructor Documentation

◆ KarniadakisMixin()

template<class F >
hp1D::KarniadakisMixin< F >::KarniadakisMixin ( const concepts::EdgeNd cell,
ushort  p 
)
inline

Definition at line 139 of file element.hh.

Member Function Documentation

◆ cell()

template<class F >
virtual const concepts::EdgeNd & hp1D::BaseElement< F >::cell ( ) const
inlinevirtualinherited

Returns the cell on which the element is built.

Implements concepts::ElementWithCell< F >.

Definition at line 99 of file element.hh.

◆ chi()

const concepts::Real3d hp1D::IntegrableElm::chi ( const Real  x) const
inlineinherited

Computes the element map. The reference element is [0,1].

Definition at line 40 of file element.hh.

◆ elemMap() [1/3]

template<typename F >
Real3d concepts::ElementWithCell< F >::elemMap ( const Real  coord_local) const
inlineinherited

Definition at line 86 of file element.hh.

◆ elemMap() [2/3]

template<typename F >
Real3d concepts::ElementWithCell< F >::elemMap ( const Real2d coord_local) const
inlineinherited

Definition at line 90 of file element.hh.

◆ elemMap() [3/3]

template<typename F >
Real3d concepts::ElementWithCell< F >::elemMap ( const Real3d coord_local) const
inlineinherited

Definition at line 94 of file element.hh.

◆ graphics()

template<class F >
virtual const concepts::ElementGraphics< Real > * hp1D::BaseElement< F >::graphics ( ) const
virtualinherited

Returns element graphics class.

Reimplemented from concepts::Element< F >.

◆ info()

template<class F >
virtual std::ostream & hp1D::BaseElement< F >::info ( std::ostream &  os) const
protectedvirtualinherited

Returns information in an output stream.

Reimplemented from concepts::OutputOperator.

Reimplemented in hp2D::NeumannTraceElement< F >.

◆ integration()

const concepts::QuadratureRule1d * hp1D::IntegrableElm::integration ( ) const
inlineinherited

Returns the integration rule.

Definition at line 51 of file element.hh.

◆ jacobianDeterminant()

Real hp1D::IntegrableElm::jacobianDeterminant ( const Real  x) const
inlineinherited

Computes the determinant of the Jacobian.

Definition at line 45 of file element.hh.

◆ p()

template<class F >
ushort hp1D::BaseElement< F >::p ( ) const
inlineinherited

Definition at line 103 of file element.hh.

◆ quadraturePoint()

virtual bool hp1D::IntegrableElm::quadraturePoint ( uint  i,
intPoint p,
intFormType  form = ZERO,
bool  localCoord = false 
) const
virtualinherited

Delivers a quadrature point.

Quadrature point consists of coordinates (for evaluation of formulas) and intermediate data, consisting of the weight and term coming from mapping.

Returns false, if the number of quadrature points is overstepped.

Parameters
inumber of quadrature point
intPointdata given back
formIntegration form
localCoordIf true, local coordinates are returned. Else physical coordinates.

Implements concepts::IntegrationCell.

◆ recomputeShapefunctions()

template<class F >
void hp1D::KarniadakisMixin< F >::recomputeShapefunctions ( )
overridevirtual

Recompute shape functions, e.g. for other abscissas redefined through IntegrableElm::rule().set(...)

Implements hp1D::BaseElement< F >.

◆ rule()

static concepts::QuadRuleFactory & hp1D::IntegrableElm::rule ( )
inlinestaticinherited

Access to the quadrature rule, which is valid for all elements of this type (hp1D::IntegrableElm).

Change of the quadrature rule is put into practice for newly created elements and for already created elements by precomputing the integration points and shape functions on them.

Definition at line 62 of file element.hh.

◆ shpfct()

template<class F >
const concepts::Karniadakis< 1, 0 > * hp1D::KarniadakisMixin< F >::shpfct ( ) const
inlineoverridevirtual

Returns the shape functions.

Implements hp1D::BaseElement< F >.

Definition at line 151 of file element.hh.

◆ shpfctD()

template<class F >
const concepts::Karniadakis< 1, 1 > * hp1D::KarniadakisMixin< F >::shpfctD ( ) const
inline

Returns the derivatives of the shape functions.

Definition at line 155 of file element.hh.

◆ shpfctDD()

template<class F >
const concepts::Karniadakis< 1, 2 > * hp1D::KarniadakisMixin< F >::shpfctDD ( ) const
inline

Returns the second derivatives of the shape functions.

Definition at line 160 of file element.hh.

◆ support()

template<class F >
virtual const concepts::Edge & hp1D::BaseElement< F >::support ( ) const
inlinevirtualinherited

Definition at line 91 of file element.hh.

◆ T()

◆ tag()

template<class F >
uint & concepts::Element< F >::tag ( )
inlineinherited

Returns the tag.

Definition at line 66 of file element.hh.

◆ vertex()

template<class F >
virtual concepts::Real3d hp1D::BaseElement< F >::vertex ( uint  i) const
inlinevirtualinherited

Definition at line 95 of file element.hh.

Member Data Documentation

◆ cell_

const concepts::EdgeNd& hp1D::IntegrableElm::cell_
protectedinherited

The cell.

Definition at line 70 of file element.hh.

◆ graphics_

template<class F >
std::unique_ptr<LineGraphics> hp1D::BaseElement< F >::graphics_
staticprotectedinherited

Definition at line 126 of file element.hh.

◆ int_

std::unique_ptr<concepts::QuadratureRule1d> hp1D::IntegrableElm::int_
protectedinherited

The integration rule.

Definition at line 72 of file element.hh.

◆ p_

template<class F >
ushort hp1D::BaseElement< F >::p_
protectedinherited

T matrix of the element.

Definition at line 124 of file element.hh.

◆ rule_

concepts::QuadRuleFactory hp1D::IntegrableElm::rule_
staticprotectedinherited

Definition at line 74 of file element.hh.


The documentation for this class was generated from the following file: