The following two types are shape function mixins. More...
#include <element.hh>
Public Types | |
typedef F | FieldT |
typedef F | type |
enum | intFormType { ZERO , ONE , TWO , THREE } |
Public Member Functions | |
KarniadakisMixin (const concepts::EdgeNd &cell, ushort p) | |
void | recomputeShapefunctions () override |
const concepts::Karniadakis< 1, 0 > * | shpfct () const override |
Returns the shape functions. | |
const concepts::Karniadakis< 1, 1 > * | shpfctD () const |
Returns the derivatives of the shape functions. | |
const concepts::Karniadakis< 1, 2 > * | shpfctDD () const |
Returns the second derivatives of the shape functions. | |
virtual const concepts::Edge & | support () const |
virtual concepts::Real3d | vertex (uint i) const |
virtual const concepts::EdgeNd & | cell () const |
Returns the cell on which the element is built. | |
ushort | p () const |
virtual const concepts::ElementGraphics< Real > * | graphics () const |
Returns element graphics class. | |
Real3d | elemMap (const Real coord_local) const |
Real3d | elemMap (const Real2d &coord_local) const |
Real3d | elemMap (const Real3d &coord_local) const |
virtual const TMatrixBase< F > & | T () const =0 |
Returns the T matrix of the element. | |
uint & | tag () |
Returns the tag. | |
const concepts::Real3d | chi (const Real x) const |
Real | jacobianDeterminant (const Real x) const |
Computes the determinant of the Jacobian. | |
const concepts::QuadratureRule1d * | integration () const |
Returns the integration rule. | |
virtual bool | quadraturePoint (uint i, intPoint &p, intFormType form=ZERO, bool localCoord=false) const |
Static Public Member Functions | |
static concepts::QuadRuleFactory & | rule () |
Protected Member Functions | |
virtual std::ostream & | info (std::ostream &os) const |
Returns information in an output stream. | |
Protected Attributes | |
ushort | p_ |
T matrix of the element. | |
const concepts::EdgeNd & | cell_ |
The cell. | |
std::unique_ptr< concepts::QuadratureRule1d > | int_ |
The integration rule. | |
Static Protected Attributes | |
static std::unique_ptr< LineGraphics > | graphics_ |
static concepts::QuadRuleFactory | rule_ |
The following two types are shape function mixins.
Karniadakis shape functions mixin
Definition at line 137 of file element.hh.
|
inherited |
Definition at line 82 of file element.hh.
|
inherited |
Definition at line 81 of file element.hh.
|
inherited |
Integration form, which determines terms coming from integration over reference element
Definition at line 29 of file integral.hh.
|
inline |
Definition at line 139 of file element.hh.
|
inlinevirtualinherited |
Returns the cell on which the element is built.
Implements concepts::ElementWithCell< F >.
Definition at line 99 of file element.hh.
|
inlineinherited |
Computes the element map. The reference element is [0,1].
Definition at line 40 of file element.hh.
|
inlineinherited |
Definition at line 86 of file element.hh.
|
inlineinherited |
Definition at line 90 of file element.hh.
|
inlineinherited |
Definition at line 94 of file element.hh.
|
virtualinherited |
Returns element graphics class.
Reimplemented from concepts::Element< F >.
|
protectedvirtualinherited |
Returns information in an output stream.
Reimplemented from concepts::OutputOperator.
Reimplemented in hp2D::NeumannTraceElement< F >.
|
inlineinherited |
Returns the integration rule.
Definition at line 51 of file element.hh.
|
inlineinherited |
Computes the determinant of the Jacobian.
Definition at line 45 of file element.hh.
|
inlineinherited |
Definition at line 103 of file element.hh.
|
virtualinherited |
Delivers a quadrature point.
Quadrature point consists of coordinates (for evaluation of formulas) and intermediate data, consisting of the weight and term coming from mapping.
Returns false
, if the number of quadrature points is overstepped.
i | number of quadrature point |
intPoint | data given back |
form | Integration form |
localCoord | If true, local coordinates are returned. Else physical coordinates. |
Implements concepts::IntegrationCell.
|
overridevirtual |
Recompute shape functions, e.g. for other abscissas redefined through IntegrableElm::rule().set(...)
Implements hp1D::BaseElement< F >.
|
inlinestaticinherited |
Access to the quadrature rule, which is valid for all elements of this type (hp1D::IntegrableElm).
Change of the quadrature rule is put into practice for newly created elements and for already created elements by precomputing the integration points and shape functions on them.
Definition at line 62 of file element.hh.
|
inlineoverridevirtual |
Returns the shape functions.
Implements hp1D::BaseElement< F >.
Definition at line 151 of file element.hh.
|
inline |
Returns the derivatives of the shape functions.
Definition at line 155 of file element.hh.
|
inline |
Returns the second derivatives of the shape functions.
Definition at line 160 of file element.hh.
|
inlinevirtualinherited |
Definition at line 91 of file element.hh.
|
pure virtualinherited |
Returns the T matrix of the element.
Implements concepts::Element< F >.
Implemented in bem::Dirac3d000< F >, bem::Linear3d000< F >, bem::Constant3d000< F >, bem::Constant3d001< F >, bem::Constant3d001< F >, bem::Constant3d002< F >, bem::Constant3d002< concepts::Real >, bem::Constant3d002< F >, hp2D::Element< F >, hp2D::Element< Real >, hp2D::NTElement_BA< F >, hp2D::NeumannTraceElement< F >, hp3D::Element< F >, hp3D::NeumannTraceElement3d< F >, linDG3D::FvdgElement, and linearFEM::Element.
|
inlineinherited |
Returns the tag.
Definition at line 66 of file element.hh.
|
inlinevirtualinherited |
Definition at line 95 of file element.hh.
|
protectedinherited |
The cell.
Definition at line 70 of file element.hh.
|
staticprotectedinherited |
Definition at line 126 of file element.hh.
|
protectedinherited |
The integration rule.
Definition at line 72 of file element.hh.
|
protectedinherited |
T matrix of the element.
Definition at line 124 of file element.hh.
|
staticprotectedinherited |
Definition at line 74 of file element.hh.